Abakumov, VA 1983, Guidelines for methods of hydrobiological analysis of surface waters and bottom sediments. Gidrometeoizdat, 239 p.
Abdo, SM, Ali, GH & El-Baz, FK 2015, Potential production of omega fatty acids from microalgae.
International Journal of Pharmaceutical Sciences Review and Research, 34: 210-215,
https://doi.org/10.12777/ijse.2.1.13-16.
Arkronrat, W, Deemark, P & Oniam, V 2016, Growth performance and proximate composition of mixed cultures of marine microalgae (Nannochloropsis sp. & Tetraselmis sp.) with monocultures. Songklanakarin Journal of Science and Technology, 38: 1-5.
Banerjee, S, Hew, WE, Khatoon, H, Shariff, M & Yusoff, FM 2011, Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. African Journal of Biotechnology, 10: 1375-1383.
Basford, AJ, Mos, B, Francis, DS, Turchini, GM, White, CA & Dworjanyn, S 2020, A microalga is better than a commercial lipid emulsion at enhancing live feeds for an ornamental marine fish larva. Aquaculture, 523: 735203.
Calder, PC 2018, Very long-chain n-3 fatty acids and human health: fact, fiction and the future. Proc. Nutrition Soceity, 77: 52-72, https://doi.org/10.1017/S0029665117003950.
Dawood, MAO 2021, Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Reviews in Aquaculture, 13: 642–663.
Dineshbabu, G, Goswami, G, Kumar, R, Sinha, A & Das, D 2019, Microalgae–nutritious, sustainable aqua-and animal feed source. Journal of Functional Foods, 62: 103545.
Fernández, RG 2001, Artemia bioencapsulation I. Effect of particle sizes on the filtering behavior of Artemia franciscana. Journal of Crustacean Biology, 21: 435-442.
Francis, DS, Cleveland, BJ, Jones, PL, Turchini, GM & Conlan, JA 2019, Effects of PUFA-enriched Artemia on the early growth and fatty acid composition of Murray cod larvae. Aquaculture, 513: 734362.
Goedkoop, A, Sonesten, L, Ahlgren, G & Boberg, M 2000, Fatty acids in profundal benthic invertebrates and their major food resources in Lake Erken, Sweden: seasonal variation and trophic indications. Canadian Journal of Fish Aquatulture Sciences, 57: 2267-2279.
Keys to freshwater algae of the USSR (1951-1982). Soviet Science V, pp. 2-14.
Kitayev, SP 2007, Fundamentals of limnology for hydrobiologists and ichthyologists. Karelian Scientific Center of the Russian Academy of Sciences, 395 p.
Kolomiytseva, IK 2011, Lipids in mammalian hibernation and artificial hypobiosis. Biochemistry (Moscow), 76: 1291-1299, DOI: 10.1134/S0006297911120029.
Lavens, P & Sorgeloos, P 2018, Production of Artemia in culture tanks. In Artemia Biology, edited by RA, Browne, P, Sorgeloos, P & CNA, Trotman, Boca Raton: CRC Press, pp. 317-350.
Lavens, P, Coutteau, P & Sorgeloos, P 1995, Laboratory and field variation in HUFA enrichment of Artemia nauplii. Larvi, 95: 137-140.
Le, TH, Hoa, NV, Sorgeloos, P & Van Stappen, G 2019, Artemia feeds: A review of brine shrimp production in the Mekong Delta, Vietnam. Reviews in Aquaculture, 11: 1169-1175.
Li, HY, Lu, Y, Zheng, JW, Yang, WD, Liu, JS 2014, Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Marine Drugs, 12: 153-166, https://doi.org/10.3390/md12010153.
Measurement technique 1364-2000, Method for gas chromatographic determination of fatty acids and cholesterol in food and blood serum.
Méndez-Martínez, Y, García-Guerrero, MU, Lora-Vilchis, MC, Martínez-Córdova, LR, Arcos-Ortega, FG, Alpuche, JJ & Cortés-Jacinto, E 2018, Nutritional effect of Artemia nauplii enriched with Tetraselmis suecica and Chaetoceros calcitrans microalgae on growth and survival on the river prawn Macrobrachium americanum larvae. Aquaculture International, 26: 1001-1015.
Mitani, E, Nakayama, F, Matsuwaki, I, Ichi I, Kawabata, A, Kawachi, M, Kato, M 2017, Fatty acid composition profiles of 235 strains of three microalgal divisions within the NIES microbial culture collection. Microbial Resources and Systematics, 33: 19-29.
Mugwanya M, Dawood MA, Kimera F, Sewilam H 2021, Biofloc systems for sustainable production of economically important aquatic species: A review. Sustainability, 13: 7255.
Nielsen, JM 2018, Diet tracing in ecology: Method comparison and selection. In: JM, Nielsen, EL, Clare, B, Hayden, MT Brett, P, Kratina, Methods in ecology and evolution, 9: 278-291.
Nieves-Soto, M, Lozano-Huerta, R, López-Peraza, DJ, Medina-Jasso, MA, Hurtado-Oliva, MA & Bermudes-Lizárraga, JF 2021, Effect of the enrichment time with the tuna orbital oil emulsion on the fatty acids profile of juveniles of Artemia franciscana. Aquaculture and Fisheries, 6: 69-74.
Paulo, MC, Cardoso, C, Coutinho, J, Castanho, S & Bandarra, NM 2020, Microalgal solutions in the cultivation of rotifers and artemia: scope for the modulation of the fatty acid profile. Heliyon, 6(11): e05415.
Ramos-Llorens, M, Ribes-Navarro, А, Navarro, JC, Hontoria, F, Kabeya, N & Monroig, O 2023, Can Artemia franciscana produce essential fatty acids? Unveiling the capacity of brine shrimp to biosynthesis long-chain polyunsaturated fatty acids. Aquaculture, 563:1254-1266, doi.org/10.1016/j.aquaculture.2022.738869.
Roo, J, Hernández-Cruz, CM, Mesa-Rodriguez, A, Fernández-Palacios, H & Izquierdo MS 2019, Effect of increasing n-3 HUFA content in enriched Artemia on growth, survival and skeleton anomalies occurrence of greater amberjack Seriola dumerili larvae. Aquaculture, 500: 651-659.
Tocher, DR 2015, Omega-3 long-chain polyunsaturated fatty acids and aquaculture in perspective. Aquaculture, 449: 94-107.
Watanabe, T 1978, Nutritive value of plankton for fish larvae in the view point of lipids. Japan Fisheries Service, 22: 93-111.