Akbar, S 2020, Lupinus albus L. (Fabaceae/Leguminosae). Handbook of 200 medicinal plants, Springer, Cham, pp. 1123-1128.
Akil, D & Okant, M 2020, Effect of Planting Times Growth and Yield of White Lupin (Lupinus albus L.). Legume Research: An International Journal, 43: 3.
Annicchiarico, P, Harzic, N, Carroni, AM 2010, Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Research, 119: 114-124.
Annicchiarico, P Boschin, G, Manunza, P & Arnoldi, A 2014, Quality of Lupinus albus L. (white lupin) seed: extent of genotypic and environmental effects. Journal of Agricultural and Food Chemistry, 62: 6539-6545.
Annicchiarico, P, Harzic, N & Carroni, AM 2010, Adaptation, diversity, and exploitation of global white lupin (Lupinus albus L.) landrace genetic resources. Field Crops Research, 119: 114-124, DOI: 10.1016/j.fcr.2010.06.022.
Aslam, MM, et al. 2020, In vitro regeneration potential of white lupin (Lupinus albus) from cotyledonary nodes. Plants, 9: 318.
Baddeley, JA, Jones, S, Topp, CFE, et al. 2013, Biological nitrogen fixation (BNF) by legume crops in Europe. Legume Futures Report 1.5. [Electronic resource], URL, www.legumefutures.de.
Cernay, C, Ben Ari, T, Pelzer, E, Meynard, JM & Makowski, D 2015, Estimating variability in grain legume yields across Europe and the Americas. Scientific Reports, 5: 11171. DOI: 10.1038/srep11171.
Cesare Sirtori, I 2015, The evolving story of dietary proteins – from structural and functional nutrients to biopharmaceuticals: is lupin the superstar? Proceedings of the XIV International Lupin Conference. Milan, Italy 21–26 June 2015.
Dieterich, R, et al. 2015, Effects of genotype and environment on grain yield and crude protein content in narrow- leafed lupin. Proceedings of the XIV International Lupin Conference. Milan, Italy, P. 127.
Gataulina, GG, 2014, The future of the white lupine. White Lupine Journal, 1: 4-7.
Gataulina, GG, Medvedeva, NV, Shtele, AL & Tsigutkin, AS 2013, Growth, development, yield and feeding value of varieties of white lupine (Lupinus albus L.) in RGAU-ICCA. Izvestiya Timiryazev Agricultural Academy, 6: 12-30.
Georgieva, N & Kosev, VI 2018, Adaptability and stability of white lupin cultivars. Banat’s Journal of Biotechnology, 9: 72-83.
Kosev, V & Vasileva, V 2019, Comparative biological characteristic of white lupin (Lupinus albus L.) varieties. Genetika, 51: 275-285.
Lucas, MM, Stoddard, FL, Annicchiarico, P, Frías, J, Martínez Villaluenga, C, Sussmann, D, Duranti, M, Seger, A, Zander, PM & Pueyo, JJ 2015, The future of lupin as a protein crop in Europe. Frontiers in Plant Science, 6:705. DOI: 10.3389/fpls.2015.00705.
Niewiadomska, A, et al. 2020, The influence of bio-stimulants and foliar fertilizers on yield, plant features, and the level of soil biochemical activity in white lupine (Lupinus albus L.) cultivation. Agronomy, 10: 150.
Schläfke, N, Zander, P, Reckling M, et al. 2014, Evaluation of legume-supported agriculture and policies at farm level. Legume Futures Report 4.3. [Electronic resource], URL, www.legumefutures.de.
Visser, CLM, Schreuder, R & Stoddard, FL 2014, The EU’s dependency on soya bean import for the animal feed industry and potential for EU produced alternatives. OCL 21, D407, DOI: 10.1051/ocl/2014021.
Watson, Ch, 2014.pdf. [Electronic resource] // URL. http://www.legumefutures.de/images.
Yahya, RT 2020, Morphological and physiological response of Lupinus albus plants tissues for treatment to zinc oxide nanoparticle. Plant Archives, 20: 3465-3468.