Al-Jasass, FM, Al-Eid, SM & Ali, SHH 2010, A comparative study on date syrup (Dips) as substrate for the production of baker's yeast (Saccharomyces cerevisiae).
Acta Horticulturae, 8(882): 699-704.
https://doi.org/10.17660/ActaHortic.2010.882.76.
André, J & Baran, R 2020, Nail cosmetics: Handle of skin care. In: AO, Barel, M, Paye & HI, Maibach (Eds.), Handbook of cosmetic science and technology, 3rd edition, Boca Raton, CRC Press, 745-768.
Arranz-Otaegui, A, Gonzalez Carretero, L, Ramsey, MN, Fuller, DQ & Richter, T 2018, Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan.
Proceedings of the National Academy of Sciences of the United States of America,
115(31): 7925-7930,
https://doi.org/10.1073/pnas.1801071115.
Azmuda, N, Jahan, N & Khan, AR 2006, Production and Comparison of Indigenous and Commercial Baker's Yeasts.
Bangladesh Journal of Microbiology, 23: 89-92,
https://doi.org/10.3329/bjm.v23i2.868.
Bigey, F, Segond, D, Friedrich, A, Guezenec, S, Bourgais, A, Huyghe, L, Agier, N, Nidelet, T & Sicard, D 2021, Evidence for Two Main Domestication Trajectories in Saccharomyces cerevisiae Linked to Distinct Bread-Making Processes.
Current Biology, 31: 722-732,
https://doi.org/10.1016/j.cub.2020.11.016.
Bing, J, Han, PJ, Liu, WQ, Wang, QM & Bai, FY 2014, Evidence for a Far East Asian origin of lager beer yeast.
Current Biology, 24: 380-381,
https://doi.org/10.1016/j.cub.2014.04.031.
Birke, RR, Causon, T, Turetschek, R, Emerstorfer F, Karner, T, Domig, KJ & Hann, S 2022, Requirements for accurate quantification of nitrate and nitrite in molasses: Insights from an interlaboratory comparison.
Food Control, 134,
https://doi.org/10.1016/j.foodcont.2021.108712.
Brat, D, Boles, E & Wiedemann, B 2009, Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.
Applied and Environmental Microbiology Journal,
75: 2304-2311;
https://doi.org/10.1128/ AEM.02522-08.
Bzducha-Wróbel, A, Błażejak, S & Tkacz, K 2012, Cell wall structure of selected yeast species as a factor of magnesium binding ability.
European Food Research and Technology, 235: 355-366,
https://doi.org/10.1007/ s00217-012-1761-4.
Dague, E, Bitar, R, Ranchon, H, Durand, F, Yken, HM & François, JM 2010, An atomic force microscopy analysis of yeast mutants defective in cell wall architecture.
Yeast, 27: 673-684,
https://doi.org/10.1002/yea.1801
Díaz-Campillo, M, Urtíz, N, Soto, Ó, Barrio, E, Rutiaga, M & Páez, J 2012, Effect of glucose concentration on the rate of fructose consumption in native strains isolated from the fermentation of
Agave duranguensis.
World Journal of Microbiology and Biotechnology,
28: 3387-3391,
https://doi.org/10.1007/s11274-012-1143-x.
Dima, SO, Neamțu, C, Desliu-Avram, M, Ghiurea, M, Capra, L, Radu, E, Stoica, R, Faraon, V-A, Zamfiropol-Cristea, V, Constantinescu-Aruxandei, D, Oancea, F 2020, Plant biostimulant effects of baker’s yeast Vinasse and selenium on tomatoes through foliar fertilization.
Agronomy, 10: 133,
https://doi.org/10.3390/agronomy10010133.
Dupres, V, Dufrêne, YF & Heinisch, JJ 2010, Measuring cell wall thickness in living yeast cells using single molecular rulers.
ACS Nano, 4: 5498-5504,
https://doi.org/10.1021/nn101598v.
Feng, C, Hong, R, Guidong, H, Zhihang, Zh, Xin, Ch & Xianfeng, Zh 2023, Analysis of intracellular metabolism of Saccharomyces cerevisiae in logarithmic growth stage.
Food and Fermentation Industries, 48(22): 68-75.
https://doi.org/10.13995/j.cnki.11-1802/ts.030997.
Gaily, M.H, Elhassan, BM, Abasaeed, AE & Al-Zahrani, SM 2010, A direct process for the production of high fructose syrups from dates extracts.
International Journal of Food Engineering, 6(3),
https:doi.org/10.2202/1556-3758.1879.
Gómez-Pastor, R, Pérez-Torrado, R, Garre, E & Matallana, E 2011, Recent advances in yeast biomass production. In: Biomass – Detection, and usage, Matovic, D., Eds., UK, London: In TechOpen, 201-222.
González Carretero, L, Wollstonecroft, M, Fuller, D.Q 2017, A methodological approach to the study of archaeological cereal meals: a case study at Çatalhöyük East (Turkey).
Vegetation History and Archaeobotany, 26(4): 415-432,
https://doi.org/10.1007/s00334-017-0602-6.
Gryganskyi, AP, Golan, J, Muszewska, A, Idnurm, A, Dolatabadi, S, Mondo, SJ & ERT, AL 2023, Sequencing the genomes of the first terrestrial fungal lineages: What have we learned?
Microorganisms, 11(7): 1830.
https://doi.org/10.3390/microorganisms11071830.
Harrison, MC, LaBella, AL, Hittinger, CT, Rokas, A 2022, The evolution of the galactose utilization pathway in budding yeasts.
Trends in Genetics, 38: 97-106,
https://doi.org/10.1016/j.tig.2021.08.013.
Horváthová, Á & Farkaš, V 2022, Effect of N-acetyl chito-oligosaccharides on the biosynthesis and properties of chitin in
Saccharomyces cerevisiae.
Folia Microbiologica, 67: 285-289,
https://doi.org/10.1007/s12223-021-00933-6.
Johnson, EA, Echavarri-Erasun, C, 2011, Yeast biotechnology. In: CP, Kurtzman, JW, Fell, T & Boekhout, T, Eds., The yeasts: A taxonomic study, 5
th Edition, Amsterdam: Elsevier; Volume. 1; 21–44,
https://doi.org/10.1016/B978-0-444-52149-1.00003-3.
Jouhten, P, Rintala, E, Huuskonen, A, Tamminen, A, Toivari, M, Wiebe, M, Ruohonen, L, Penttilä, M & Maaheimo, N 2008, Oxygen dependence of metabolic fluxes and energy generation of
Saccharomyces cerevisiae CEN.PK113-1A.
BMC Systems Biology, 2(60),
https://doi.org/10.1186/1752-0509-2-60.
Jules, M, Beltran, G, Francois, J & Parrou, JL 2008, New Insights into Trehalose Metabolism by Saccharomyces cerevisiae: NTH2 Encodes a Functional Cytosolic Trehalase, and Deletion of TPS1 Reveals Ath1p-Dependent Trehalose Mobilization.
Applied and Environmental Microbiology, 74: 605-614,
https://doi.org/10.1128/ AEM.00557-07.
Kaino, T, Takagi, H 2008, Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses.
Applied Microbiology and Biotechnology, 79: 273-283,
https://doi.org// 10.1007/s00253-008-1431-4.
Katz Ezov, T, Chang, SL, Frenkel, Z, Segrè, AV, Bahalul, M, Murray, AW, Leu, JY, Korol, A & Kashi, Y 2010, Heterothallism in
Saccharomyces cerevisiae isolates from nature: effect of HO locus on the mode of reproduction.
Molecular Ecology, 19: 121-131,
https://doi.org/10.1111/j.1365-294X.2009.04436.x.
Kieliszek, M, Błażejak, S, Bzducha-Wróbel A & Kot, AM 2019, Effect of selenium on growth and antioxidative system of yeast cells.
Molecular Biology Reports, 46: 1797-1808,
https://doi.org/10.1007/s11033-019-04630-z.
Legras, JL, Galeote, V, Bigey, F, Camarasa, C, Marsit, S, Nidelet, T, Sanchez, I, Couloux, A, Guy,
et al. 2018, Adaptation of
S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication.
Molecular Biology and Evolution, 35: 1712-1727;
https://doi.org/10.1093/ molbev/msy066.
Levandovsky, L & Kravchenko, М 2018, The effect of the intensity of aerating the medium on the metabolic activity of alcohol yeast.
Bioprocesses, Biotechnology of Food Products, 12(4): 10-17;
http://dx.doi.org/10.15673/ fst.v12i4.1177.
Mamun-Or-Rashid, ANM, Dash, BK, Chowdhury, MdNA, Waheed, FM & Pramanik, MdK 2013, Exploration of potential baker's yeast from sugarcane juice: Optimization and evaluation.
Pakistan Journal of Biological Science, 16: 617-623,
https://doi.org/10.3923/pjbs.2013.617.623.
Martiniano, SE, Fernandes, L.A, Alba, EM, Philippini, RR, Tabuchi, SCT, Kieliszek, M, Santos, JCD & da Silva, SS 2020, A New Approach for the Production of Selenium-Enriched and Probiotic Yeast Biomass from Agro-Industrial by-Products in a Stirred-Tank Bioreactor.
Metabolites, 10(12): 508;
https://doi.org/10.3390/metabo 10120508.
McGovern, PE, Zhang, J, Tang, J, Zhang, Z, Hall, GR, Moreau, RA, 2004, Fermented beverages of pre- and proto-historic China.
Proceedings of the National Academy of Sciences USA, 101(51): 17593-17598,
https://doi.org/10.1073/pnas.0407921102.
Mussatto, SI, Dragone, G, Guimarães, PM, Silva, JP, Carneiro, LM, Roberto, IC,
et al. 2010, Technological trends, global market, and challenges of bio-ethanol production.
Biotechnology Advances, 28: 817-830,
https:/doi.org/10.1016/j.biotechadv.2010.07.001.
Nakata, H, Tamura, M, Shintani, T, Gomi, K 2014, Evaluation of baker’s yeast strains exhibiting significant growth on Japanese beet molasses and compound analysis of the molasses types.
Journal of Bioscience and Bioengineering, 117: 715-719,
https://doi.org/10.1016/j.jbiosc.2013.11.009.
Naseeb, S, James, SA, Alsammar, H, Michaels, CJ, Gini, B & Nueno-Palop, C 2017,
Saccharomyces jurei sp.
nov., isolation and genetic identification of a novel yeast species from
Quercus robur. International Journal of Systematic and Evolutionary Microbiology, 67: 2046-2052,
https://doi.org/10.1099/ijsem.0.002013.
Nielsen, J 2013, Production of biopharmaceutical proteins by yeast: Advances through metabolic engineering.
Bioengineered, 4: 207-211;
https://doi.org/10.4161/bioe.22856.
Overbeck, A, Kampen, I & Kwade, A 2015, Mechanical characterization of yeast cells: effects of growth conditions.
Letters in Applied Microbiology, 61: 333-338,
https://doi.org/10.1111/lam.12468.
Peris, D, Ubbelohde, EJ, Kuang, MC, Kominek, J, Langdon, QK, Adams, M,
et al. 2023, Macroevolutionary diversity of traits and genomes in the model yeast genus
Saccharomyces.
Nature Communications, 14: 690.
https://doi.org/10.1038/s41467-023-36139-2.
Pillet, F, Lemonier, S, Schiavone, M, Formosa, C, Martin-Yken, H, Francois, JM,
et al. 2014, Uncovering by Atomic Force Microscopy of an original circular structure at the yeast cell surface in response to heat shock.
BMC Biology, 12(6),
https://doi.org/10.1186/1741-7007-12-6.
Semchyshyn, H, Lozinska, L, Miedzobrodzki, J & Lushchak, V 2011, Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in
Saccharomyces cerevisiae cells.
Carbohydrate Research, 346: 933–938,
https://doi.org/10.1016/j.carres.2011.03.005.
Sharma, J, Kumar, V, Prasad, R, Gaur, N.A 2022, Engineering of
Saccharomyces cerevisiae as a consolidated bioprocessing host to produce cellulosic ethanol: Recent advancements and current challenges.
Biotechnology Advances, 56: 107925,
https://doi.org/10.1016/j.biotechadv.2022.107925.
Shevchenko, A, Yang, Y, Knaust, A, Thomas, H, Jiang, H, Lu, E & Wang, C, 2014, Proteomics identifies the composition and manufacturing recipe of the 2500-year-old sourdough bread from
Subeixi cemetery in China.
Journal of Proteomics, 105: 363-371,
https://doi.org/10.1016/j.jprot.2013.11.016.
Shima, J & Takagi, H 2009, Stress-tolerance of baker's-yeast (
Saccharomyces cerevisiae) cells: Stress-protective molecules and genes involved in stress tolerance.
Biotechnology and Applied Biochemistry, 53: 155-164,
https://doi.org/10.1042/BA20090029.
Sing, CN, Garcia, EJ, Lipkin, TG, Huckaba, TM, Tsang, CA, Coughlin, AC, Yang, EJ, Boldogh, IR, Higuchi-Sanabria, R & Pon LA 2022, Identification of a modulator of the actin cytoskeleton, mitochondria, nutrient metabolism and lifespan in yeast.
Nature Community, 13: 2706,
https://doi.org/10.1038/s41467-022-30045-9.
Stefanini, I, Dapporto, L, Legras, J.L, Calabretta, A, Di Paola, M, De Filippo, C, Viola, R, Capretti, P, Polsinelli, M, Turillazzi, S, Cavalieri, D 2012, Role of social wasps in Saccharomyces cerevisiae ecology and evolution.
Proceedings of the National Academy of Sciences USA, 109: 13398-133403,
https://doi.org/10.1073/ pnas.1208362109.
Stewart, GG 2014, Saccharomyces | Saccharomyces cerevisiae. In: CA, Batt, ML, Tortorello Eds., Encyclopaedia of food microbiology, 2nd edition, Oxford: Academic Press, pp. 309-315.
Tanaka, F, Ando, A, Nakamura, T, Takagi, H, Shima, J 2006, Functional genomic analysis of commercial baker’s yeast during initial stages of model dough-fermentation.
Food Microbiology, 23: 717-728,
https://doi.org/10.1016/j.fm.2006.02.003.
Tilak W, Nagodawithana, TJ & Trivedi, NB 2020, Yeast selection for baking. In CJ, Panchal, (Ed.), Yeast strain selection, Boca Raton: CRC Press,139–184.
Wang, Q, Liu, W, Liti, G, Wang, SA, Bai, FY 2012, Surprisingly diverged populations of
Saccharomyces cerevisiae in natural environments remote from human activity.
Molecular Ecology, 22: 5404–5417,
https://doi.org/10.1111/j.1365-294X.2012.05732.x.
Zakhartsev, M & Reuss, M 2018, Cell size and morphological properties of yeast
Saccharomyces cerevisiae in relation to growth temperature.
FEMS Yeast Research, 18(6),
https://doi.org/10.1093/femsyr/foy052.
Zhu, YO, Sherlock, G, Petrov, DA 2016, Whole genome analysis of 132 clinical
Saccharomyces cerevisiae strains reveals extensive ploidy variation.
G3 (Bethesda), 6: 2421-2434,
https://doi.org/10.1534/g3.116.029397.