Abad, SSAMK, Javidan, P, Baghdadi, M & Mehrdadi, N 2023, Green synthesis of Pd@ biochar using the extract and biochar of corn-husk wastes for electrochemical Cr (VI) reduction in plating wastewater. Journal of Environmental Chemical Engineering, 11: 109911.
Ahmadianfar, I, Jamei, M & Chu, X 2020, A novel hybrid wavelet-locally weighted linear regression (W-LWLR) model for electrical conductivity (EC) prediction in surface water. Journal of Contaminant Hydrology, 232: 103641.
Aliasghar, A, Javidan, P, Rahmaninezhad, SA & Mehrdadi, N 2022, Optimizing the desalination rate in a photoelectrocatalytic desalination cell (PEDC) by altering operational conditions. Water Supply, 22: 8659-8668.
Alizadeh, MJ & Kavianpour, MR 2015, Development of wavelet-ANN models to predict water quality parameters in Hilo Bay, Pacific Ocean. Marine Pollution Bulletin, 98: 171-178.
Banejad, H, Kamali, M, Amirmoradi, K & Olyaie, E 2013, Forecasting some of the qualitative parameters of rivers using wavelet artificial neural network hybrid (W-ANN) model (case of study: Jajroud river of Tehran and Gharaso river of Kermanshah). Iranian Journal of Health and Environment, 6.
Brontowiyono, W, Hammid, AT, Jebur, YM, Al Sudani, AQ, Mutlak, DA & Parvan, M 2022, Reduction of seepage risks by investigation into different lengths and positions for cutoff wall and horizontal drainage (Case study: Sattarkhan Dam). Advances in Civil Engineering, 2022.
Chen, TC 2023, Application of wavelet theory to enhance the performance of machine learning techniques in estimating water quality parameters (case study: Gao-Ping River). Water Science and Technology, 87: 1294-1315.
Fallah, M, Pirali Zefrehei, AR, Hedayati, SA & Bagheri, T 2021, Comparison of temporal and spatial patterns of water quality parameters in Anzali Wetland (southwest of the Caspian Sea) using Support vector machine model. Caspian Journal of Environmental Sciences, 19: 95-104.
Farabi, SMV, Golaghaei, M, Sharifian, M, Karimian, E & Daryanabard, G 2022, Effects of rainbow trout farming on water quality around the sea farms in the south of the Caspian Sea. Caspian Journal of Environmental Sciences, 20: 729-737.
Heddam, S, Yaseen, ZM, Falah, MW, Goliatt, L, Tan, ML, Sa’adi, Z, ... & Samui, P 2022, Cyanobacteria blue-green algae prediction enhancement using hybrid machine learning–based gamma test variable selection and empirical wavelet transform. Environmental Science and Pollution Research, 29: 77157-77187.
Heidari, AR, Mortazavi, S & Hasanzadeh, N 2022, Spatiotemporal variation analysis of water quality using multivariate statistical methods, Case study: Koohsar Lake, Western Iran. Caspian Journal of Environmental Sciences, 20: 711-720.
Huang, M, Tian, D, Liu, H, Zhang, C, Yi, X, Cai, J, ... & Ying, G 2018, A hybrid fuzzy wavelet neural network model with self-adapted fuzzy c-means clustering and genetic algorithm for water quality prediction in rivers. Complexity, 1-11. https://doi.org/10.1155/2018/8241342.
Javidan, P, Baghdadi, M, Torabian, A & Goharrizi, BA 2022, A tailored metal–organic framework applicable at natural pH for the removal of 17α-ethinylestradiol from surface water. Cancer, 11: 13.
Jeihouni, E, Eslamian, S, Mohammadi, M & Zareian, MJ 2019, Simulation of groundwater level fluctuations in response to main climate parameters using a wavelet–ANN hybrid technique for the Shabestar Plain, Iran. Environmental Earth Sciences, 78: 293.
Ji, X & Lu, J 2018, Forecasting riverine total nitrogen loads using wavelet analysis and support vector regression combination model in an agricultural watershed. Environmental Science and Pollution Research, 25: 26405-26422.
Khosravi, M, Afshar, A & Molajou, A 2022, Decision tree-based conditional operation rules for optimal conjunctive use of surface and groundwater. Water Resources Management, 36: 2013-2025.
Kumar, M, Kumar, P, Kumar, A, Elbeltagi, A & Kuriqi, A 2022, Modeling stage–discharge–sediment using support vector machine and artificial neural network coupled with wavelet transform. Applied Water Science, 12: 87.
Molajou, A, Nourani, V, Afshar, A, Khosravi, M & Brysiewicz, A 2021, Optimal design and feature selection by genetic algorithm for emotional artificial neural network (EANN) in rainfall-runoff modeling. Water Resources Management, 35: 2369-2384.
Montaseri, M, Zaman Zad Ghavidel, S & Sanikhani, H 2018, Water quality variations in different climates of Iran: toward modeling total dissolved solid using soft computing techniques. Stochastic Environmental Research and Risk Assessment, 32: 2253-2273.
Moore, CC, Corona, J, Griffiths, C, Heberling, MT, Hewitt, JA, Keiser, DA & Wheeler, W 2023, Measuring the social benefits of water quality improvements to support regulatory objectives: Progress and future directions. Proceedings of the National Academy of Sciences, 120: e2120247120.
Nagaraju, TV, Sunil, BM, Chaudhary, B, Prasad, CD & Gobinath, R 2023, Prediction of ammonia contaminants in the aquaculture ponds using soft computing coupled with wavelet analysis. Environmental Pollution, 331: 121924.
Nejatian, N, Yavary Nia, M, Yousefyani, H, Shacheri, F & Yavari Nia, M 2023, The improvement of wavelet-based multilinear regression for suspended sediment load modeling by considering the physiographic characteristics of the watershed. Water Science and Technology, 87: 1791-1802.
Parween, S, Siddique, NA, Diganta, MTM, Olbert, AI & Uddin, MG 2022, Assessment of urban river water quality using modified NSF water quality index model at Siliguri city, West Bengal, India. Environmental and Sustainability Indicators, 16: 100202.
Rajaee, T & Shahabi, A 2016, Evaluation of wavelet-GEP and wavelet-ANN hybrid models for prediction of total nitrogen concentration in coastal marine waters. Arabian Journal of Geosciences, 9: 1-15.
Saalidong, BM, Aram, SA, Otu, S & Lartey, PO 2022, Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PloS ONE, 17: e0262117.
Shi, B, Wang, P, Jiang, J, & Liu, R 2018, Applying high-frequency surrogate measurements and a wavelet-ANN model to provide early warnings of rapid surface water quality anomalies. Science of the Total Environment, 610: 1390-1399.
Uddin, MG, Nash, S, Rahman, A & Olbert, AI 2022, A comprehensive method for improvement of water quality index (WQI) models for coastal water quality assessment. Water Research, 219: 118532.
Wang, Y, Zheng, T, Zhao, Y, Jiang, J, Wang, Y, Guo, L & Wang, P 2013, Monthly water quality forecasting and uncertainty assessment via bootstrapped wavelet neural networks under missing data for Harbin, China. Environmental Science and Pollution Research, 20: 8909-8923.
Wu, J & Wang, Z 2022, A hybrid model for water quality prediction based on an artificial neural network, wavelet transform, and long short-term memory. Water, 14: 610.
Yavari, F, Salehi Neyshabouri, SA, Yazdi, J, Molajou, A & Brysiewicz, A 2022, A novel framework for urban flood damage assessment. Water Resources Management, 36: 1991-2011.
Zhang, J, Qiu, H, Li, X, Niu, J, Nevers, MB, Hu, X & Phanikumar, MS 2018, Real-time now-casting of microbiological water quality at recreational beaches: a wavelet and artificial neural network-based hybrid modeling approach. Environmental Science & Technology, 52: 8446-8455.
Zhou, S, Song, C, Zhang, J, Chang, W, Hou, W & Yang, L 2022, A hybrid prediction framework for water quality with integrated W-ARIMA-GRU and LightGBM methods. Water, 14: 1322.
Zhu, M, Wang, J, Yang, X, Zhang, Y, Zhang, L, Ren, H, ... & Ye, L 2022, A review of the application of machine learning in water quality evaluation. Eco-Environment & Health.
Zubaidi, SL, Al Bugharbee, H, Ortega Martorell, S, Gharghan, SK, Olier, I, Hashim, K. S, ... & Kot, P 2020, A novel methodology for prediction urban water demand by wavelet denoising and adaptive neuro-fuzzy inference system approach. Water, 12: 1628.