Abbaszadegan, A, Ghahramani, Y, Gholami, A, Hemmateenejad, B, Dorostkar, S, Nabavizadeh, M & Sharghi, H 2015, The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria. Journal of Nanomaterials, 3: 8.
Ahmad, A, Mukherjee, P, Senapati, S, Mandal, D, Khan, MI, Kumar, R & Sastry, M 2003, Extracellular biosynthesis of silver nanoparticles using the fungus Fusariumoxysporum. Colloids and Surfaces B: Biointerfaces, 28: 313-318.
Bagherzadeh Lakani, Meshkini, S, Yazdani Sadati, MA, Falahatkar, B 2016,Bioaccumulation of copper nanoparticle in gill, liver, intestine and muscle of Siberian sturgeon (Acipenser baerii) juvenile. Caspian Journal of Environmental Sciences, 14: 105-115
Bhainsa, KC & D’Souza, SF 2006, Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillusfumigatus. Colloids and Surfaces B, 47: 160-164.
Chaudhari, PR, Masurkar, SA, Shidore, VB & Kamble, SP 2012, Antimicrobial activity of extracellularly synthesized silver nanoparticles using Lactobacillus species obtained from vizylac capsule. Journal of Applied Pharmaceutical Science, 2: 25-29.
Chitra, K & Annadurai, G 2014, Antibacterial Activity of pH-Dependent Biosynthesized Silver Nanoparticles against Clinical Pathogen.
BioMed Research International, 6 p., DOI:
10.1155/2014/725165.
El-Rafie, HM, & Hamed, MAA 2014, Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Advances in Natural Sciences: Nanoscience and Nanotechnology, 5(3), 035008.
El-Zahry, MR, Mahmoud, A, Refaat, IH, Mohamed, HA, Bohlmann, H & Lendl, B 2015, Antibacterial effect of various shapes of silver nanoparticles monitored by SERS. Talanta, 138: 183-189.
Emsbo, P, Mclaughlin Patrick, I, Breit George, N, Edward, A & Alan, E 2015, Rare earth elements in sedimentary phosphate deposits: Solution to the global REE crisis? Gondwana Research, pp. 776-785.
Fabrega, J, Fawcett, SR, Renshaw, JC & Lead, JR 2009, Silver nanoparticle impact on bacterial growth: Effect of pH, concentration, and organic matter. Environmental Science & Technology, 43: 7285- 7290.
Ghazanfari, S, Rahimi, R, Zamani-Ahmadmahmood, R, Momeninejad, A, Abed-Elmdoust, A 2020, Impact of silver nanoparticles on hepatic enzymes and Thyroid hormones in Swai (Pangasius hypophthalmus). Caspian Journal of Environmental Sciences, 18: 265-275.
Guangquan Li,
Dan He,
Yongqing Qian,
Buyuan Guan,
Song Gao,
Yan Cui,
Koji Yokoyama,
Li Wang 2012, Fungus-Mediated Green Synthesis of Silver Nanoparticles Using Aspergillus terreus.
International Journal of Molecular Sciences, 13: 466-476, DOI:
10.3390/ijms13010466.
Gurunathan, S, Lee, KJ, Kalishwaralal, K, Sheikpranbabu, S, Vaidyanathan, R & Eom, SH 2009, Antiangiogenic properties of silver nanoparticles. Biomaterials, 30: 6341-6350.
Hans, B 2014, Enzyme assays. Review, Perspectives in Science, 1: 41-55.
Holt, JG, Krieg, NR, Sneath, PHA, Staley, JT, Williams, S & Bergy, S 1994, Manual of Determinative Bacteriology. 9th Ed. Williams & Wilkins, USA: 532-551.
Hong, X, Wen, J, Xiong, X & Hu, Y 2016, Shape effect on the antibacterial activity of silver nanoparticles synthesized via a microwave-assisted method. Environmental Science and Pollution Research, 23: 4489-4497.
Johari, SA, Sourinejad, I, Asghari, S, Bärsch, N 2015, Toxicity comparison of silver nanoparticles synthesized by physical and chemical methods to tadpole (Rana ridibunda). Caspian Journal of Environmental Sciences, 13: 383-390
Johari, SA, Asghari, S & Yu, IJ 2016, Toxicity of various silver nanoparticles compared to silver ions in the Ponto-Caspian amphipod Pontogammarus maeoticus (Sowinsky, 1894). Caspian Journal of Environmental Sciences, 14: 25-32.
Kavitha, KS, Baker, S, Rakshith, D, Kavitha, HU, YashwanthaRao, HC, Harini, BP & Satish, S 2013, Plantsas green source towards synthesis of nanoparticles. International Research Journal of Biological Sciences, 2: 66-76.
Kalimuthu, K, Babu, RS, Venkataraman, D, Mohd, B & Gurunathan, S 2008, Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces B: Biointerfaces, 65: 150-3.
Luo, F, Liu, T, He, Z, Xia, Q, Sui, Z, & Chang, B 2018, Leveraging gloss knowledge in neural word sense disambiguation by hierarchical co-attention. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 1402-1411.
Matsumura, Y, Yoshikata, K, Kunisak, S & Tsuchido, T 2003, mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 69: 4278-4281.
Murugan, A & Shanmugasundaram, KK 2014, Biosynthesis and characterization of silver nanoparticles using the aqueous extract of Vitex negundo. Linn. World Journal of Pharmacy and Pharmaceutical Sciences, 3: 1385-1393.
Natarajan, K, Selvaraj, J & Amachandra, V 2014, Microbial production of silver nanoparticles. Digest Journal of Nanomaterials and Biostructures, 5: 135-140.
Pinto, RJB, Marques, PAA, Neto, CP, Trindade, T, Daina, S & Sadocco, P 2009, Antibacterial activity of nanocomposites of silver and bacterial or vegetable cellulo-sic fibers. Acta Biomaterialia, 5: 2279-2289.
Rai, MK, Deshmukh, SD, Ingle, AP & Gade, AK 2012, Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112: 841-852.
Rajeshkumar, S & Malarkodi, C 2014, In Vitro Antibacterial Activity and Mechanism of Silver Nanoparticles against Foodborne Pathogens.
Bioinorganic Chemistry and Applications, 10 p.,
https://doi.org/10.1155/ 2014/581890.
Ranganath, E, Rathod, V & Banu, A 2012, Screening of Lactobacillus spp., for mediating the biosynthesis of silver nanoparticles from silver nitrate. Journal of Pharmacy, 2: 237-241.
Sarvamangala, D, Kondala, K, Murthy, USN, NarasingaRao, B, Sharma, GVR & Satyanarayana, R 2013, Biogenic synthesis of AgNPs using Pomelo fruit-characterization and antimicrobial activity against Gram +Ve and Gram -Ve bacteria. International Journal of Pharmaceutical Sciences, 19: 30-35.
Shaligram, NS, Bule, M, Bhambure, R, Singhal, RS, Singh, SK, Szakacs, G & Pandey, A 2009, Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistery, 44: 939-943.
Shrivastava, S, Bera ,T, Roy, A, Singh, G, Ramachandrarao, P & Dash, D 2007, Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology, 18: 225103-225112.
Soo-Hwan, K, Lee, H, Ryu, D, Choi, S & Lee, D 2011, Antibacterial Activity of Silvernanoparticles Against Staphylococcus aureus and Escherichia coli, Korean Journal of Microbiology and Biotechnology, 39: 77-85.
Sreedevi, TP, Thilagam, M, Tamil Selvi, A & Chandrasekaran, B 2015, Synthesis, characterization and antibacterial studies of silver nanoparticles using lactobacillus plantarum. World Journal of Pharmaceutical Research, 4: 1757-1773.
Thakkar, KN, Mhatre, SS & Parikh, RY 2010, Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6: 257-262.
Thomas, J, Silhavy, D, Kahne & Walker, S 2010, The bacterial Cell Envelope. Cold Spring Harbor Perspectives in Biology, 2: 000414.
Thompson JS, Ling X & Grunstein, M 1994, Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature, 369: 245-247.
Vanaja, M & Annadurai, G 2013, Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Applied Nanoscience, 3: 217-223.
Vigneshvar, S, Sudhakumari, CC, Senthilkumaran, B & Prakash, H 2016, Recent Advances in Biosensor Technology for Potential Applications: An Overview. Frontiers in Bioengineering and Biotechnology, www.frontiersin.org, Vol. 4 Article 11. DOI: 10.3389/fbioe.2016.00011.
Wu, D, Fan, W, Kishen, A, Gutmann, JL & Fan, B 2014, Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. Journal of Endodontics, 40: 285-290.