Azari, F 2009, Determine the area of the protection (shield) of Anzali wetland, The Iranian Department of Environment, Tehran.105 p. [In Persian].
Bazargan-Lari, MR, Kerachian, R, Sedghi, H, Fallahnia M, Abed-Elmdoust A, Nikoo, MR, 2010, Developing Probabilistic Operating Rules for Real-time Conjunctive Use of Surface and Groundwater Resources: Application of Support Vector Machines, Journal of Water and Wastewater, 21:54-69. [In Persian].
Hsu, CW, Chang, CC & Lin, CJ 2003, A practical guide to support vector classification, www.csie.ntu.edu.tw, 4 May 2009.
Huang, S, Chang, J, Huang, Q & Chen, Y 2014, Monthly stream flow prediction using modified EMD-based support vector machine. Journal of Hydrology, 511: 4. 764-775.
Japan International Cooperation Agency (JICA) 2005, Integrated management for Anzali wetland. Department of Environment of Iran. Tehran, 182 p. [In Persian].
Kakaei Lafadani, E, Moghaddam Nia, A, Ahmadi, A, Jajarmizadeh, M & Ghafari, M 2013, Stream flow simulation using SVM, ANFIS and NAM models (A case study). Caspian journal of applied sciences research 2: 4. 86-93.
Liu, W, Wang, GY, Fu, JY, & Zou, X 2013, Water Quality Prediction Based on Improved Wavelet Transformation and Support Vector Machine. Advanced Materials Research, 726: 3547-3553.
Misra, D, Oommen, T, Agarwal, A, Mishra, SK & Thompson, AM 2009, Application and analysis of support vector machine based simulation for runoff and sediment yield. Biosystems Engineering, 103: 3. 527-535.
Mohammadpour, M, Mehrabi, A & Katouzi, M 2012, Daily discharge forecasting using support vector machine. Journal of Information and Electronics Engineering 2: 769-772.
Nayak, PC, Sudheer, KP, Rangan, DM & Ramasastri, KS 2004, A neuron-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291: 52-66.
Noori R. Khakpoor a. Dehghani M. Farohknia A. 2011.Monthly Stream Flow Prediction Using Support Vector Machine Based on Principal Component Analysis, Journal of Water and Wastewater, 22: 118-123.
Pao, Y.1989."Adaptive pattern recognition and neural networks,"
Rafii, Y, Malekmohammadi, B, Abkar, A, Yavari, A, Ramezani Mehrian, M, Zohrabi, H 2011,
Environmental Change Detection of Wetlands and Protected Areas Using Multi Temporal Images of TM Sensor (Case Study: Neyriz Wetland, Iran),
Journal of environmental studies, 37:65-76.
Saedi, S, Soleimani, K, Nikmehr, S, Kavian, A 2016, Evaluation of the performance of the support vector machine model in predicting salinity changes aquifer in the Caspian Sea coastal, second national congress in the field of development of agricultural science and natural resources, 11p.
Solgi, A, Pourhaghi, A., Zarei, H, Ansari, H 2017, Modeling and Forecast Biological Oxygen Demand (BOD) using Combination Support Vector Machine with Wavelet Transform, Journal of Water and Soil, 31: 86-100.
Samsudin, R, Saad, P & Shabri, A 2011, River flow time series using least squares support vector machines. Hydrology and Earth System Sciences, 15: 1835-1852.
Sedighi, F, Vafakhah, M & Javadi, MR 2016, Rainfall–Runoff modeling using Support Vector Machine in snow-affected watershed. Arabian Journal for Science and Engineering, 41: 10. 4065-4076.
Tabachnick, BG & Fidell, LS 2001, Using multivariate statistics, 3rd Ed., Allyn and Bacon, Boston, London.
Vapnik, VN 1998, Statistical learning theory. Wiley, New York: 250-320.
Vapnik, VN 1995, The nature of statistical learning theory. Springer, New York: 250-320.
Xin, S, Qing, X, Lei, Y & Ning, L 2010, "A comparative study of eutrophication Evaluation Models Based on SOM Neural Network and SVM", Journal of Chongqing University (Natural Science Edition), 33:119-123.
Xiang, SL, Liu, ZM, Ma, LP 2006, Study of multivariate linear regression analysis model for ground water quality prediction. Guizhou Science, 24:60-2.
Yoon, H, Jun, SC, Hyun, Y, Bae, GO & Lee, KK 2011, A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology 396: 128-138.