Aathi, K, Ramasubramanian, V, Uthayakumar, V & Munirasu, S 2013, Effect of supplemented diet on survival, growth, hematological, biochemical and immunological responses of Indian major carp
Labeo rohita.
International Research Journal of Pharmacy, 4: 141-147.
Abalaka, SE, Esievo, KAN & Shoyinka, SVO 2011, Evaluation of biochemical changes in Clarias gariepinus adults exposed to aqueous and ethanolic extracts of Parkia biglobosa pods. African Journal of Biotechnology, 10: 234-240.
Ahmad, Z 2012, Toxicity bioassay and effects of sub-lethal exposure of malathion on biochemical composition and haematological parameters of Clarias gariepinus. African Journal of Biotechnology, 11: 8578–8585.
Aker, WG, Hu, X, Wang, P & Hwang, HM 2008, Comparing the relative toxicity of malathion and malaoxon in blue catfish Ictalurus furcatus. Environmental Toxicology, 23: 548-554.
Al-Ghanim, KA, 2012, Acute toxicity and effects of sub-lethal malathion exposure on biochemical and haematological parameters of Oreochromis niloticus. Scientific Research and Essays, 7:1674–1680.
Amin, KA & Hashem, KS, 2012, Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defence and role of alpha-tocopherol. BMC Veterinary Research, 8: 45.
Ashouri, S, Keyvanshokooh, S, Salati, AP, Johari, SA & Pasha Zanoosi H 2015, Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture, 446: 25–29.
Ashwell, G 1957, Colorimetric analysis of sugars. Methods in Enzymology, 3: 378–386.
Bakhshwan, SA, Marzouk, MS, Hanna, MI & Hamed, HS 2009, Some investigation on the clinical and biochemical alterations associated with diazinon toxicity in Clarias gariepinus. Egyptian Journal of Aquatic Biology and Fisheries, 13: 173 -197.
Banaee, M, Sureda, A, Mirvaghefi, AR & Ahmadi, K 2013, Biochemical and histological changes in the liver tissue of Rainbow trout (Oncorhynchus mykiss) exposed to sub-lethal concentrations of diazinon. Fish Physiology and Biochemistry, 39: 489-501.
Chakraborty, P, Hossain, U, Murmu, N, Das, JK, Pal, S & Bhattacharya, S 2009, Modulation of cyclophosphamide-induced cellular toxicity by diphenylmethyl selenocyanate in vivo, an enzymatic study. Journal of Cancer Molecules, 4: 183-189.
Cui, LQ, Xu, W, Ai, QH, Wang, DF & Mai, KS 2012, Effects of dietary chitosan oligosaccharide complex with rare earth on growth performance and innate immune response of turbot, Scophthalmus maximus L. Aquaculture Research, 44: 683–690.
Doumas, BT, Watson, W & Biggs, HG 1971, Albumin standards and measurement of serum albumin with bromocresol green. Clinica Chimica Acta, 31: 87–96.
Ellis, AE 1990, Immunity to bacteria in fish. Fish & Shellfish Immunology, 9: 291-308.
Garen, A & Levinthal, C 1960, A fine-structure genetic and chemical study of the enzyme alkalinephosphatase of E. coli I. Purification and characterization of alkaline phosphatase. Biochimica et Biophysica Acta, 38: 470–483.
Hamed, HS 2015, Impact of a Short – Term Malathion Exposure of Nile Tilapia, (Oreochromis niloticus): The Protective Role of Selenium. International Journal of Environmental Monitoring and Analysis, 3: 30-37.
Harikrishnan, R, Kim, J, Balasundaram, C & Heo, M 2012, Immunomodulatory effects of chitin and chitosan enriched diets in Epinephelus bruneus against Vibrio alginolyticus infection. Aquaculture, 326: 46-52.
Harabawy, SA & Ibrahim, THA 2014, Sublethal toxicity of carbofuran pesticide on the African catfish Clarias gariepinus (Burchell 1822): Haematological, biochemical and cytogenetic response. Ecotoxicology and Environment Safety, 103: 61-67.
Jordan, M S, Reinecke, SA & Reinecke, AJ 2013, Biomarker responses and morphological effects in juvenile tilapia Oreochromis mossambicus following sequential exposure to the organophosphate azinphos-methyl. Aquatic Toxicology, 144-145: 133-140.
Karimzadeh, K & Pormehr, M 2017, Antibacterial activity of different extracts of prawn shell (Macrobrachium nipponense) against human bacterial pathogens. International Archives of Health Sciences. 4: 13-6.
Kaur, G, Alam, MS, Jabbar, Z, Javed, K & Athar, M 2006, Evaluation of antioxidant activity of Cassia siamea flowers. Journal of Ethnopharmacology, 108: 340-348.
Keyvanshokooh, S & Kalbassi, MR 2006, Genetic variation of Rutilus rutilus caspicus (Jakowlew 1870) populations in Iran based on random amplified polymorphic DNA markers: a preliminary study. Aquaculture Research, 37: 1437-1440.
Khana, KU, Zuberia, A, Nazirb, S, Ullaha, I, Jamila, Z & Sarwara, H 2017, Synergistic effects of dietary nano selenium and vitamin C on growth, feeding, and physiological parameters of mahseer fish (Tor putitora). Aquaculture Reports, 5: 70–75.
Knedel, M & Boetteger, R 1967, Kinetic method for determination of pseudocholinesterase (acylcholine acylhydrolase) activity. Wiener klinische Wochenschrift, 45: 325-327.
Kucukbay, FZ, Yazlak, H, Karaca, I, Sahin, N, Tuzcu, M, Cakmak, MN & Sahin, K 2009, The effects of dietary organic or inorganic selenium in rainbow trout (Oncorhynchus mykiss) under crowding conditions. Aquaculture Nutrition, 15:569–576.
Majumder, R & Kaviraj, A 2018, Acute and sublethal effects of organophosphate insecticide chlorpyrifos on freshwater fish Oreochromis niloticus. Drug and Chemical Toxicology, 26: 1-9.
Modesto, K A and Martinez, C B R 2010, Effects of roundup transorb on fish: hematology, antioxidant defenses and acetylcholine esterase activity. Chemosphere, 81: 781–787.
Moore, PD, Patlolla, AK & Tchounwou, PB 2011, Cytogenetic evaluation of malathion-induced toxicity in Sprague–Dawley rats. Mutation Research, 725: 78–82.
Muzzarelli, RAA 2010, Chitins and chitosan as immunoadjuvants and non-allergic drug carriers. Marine Drugs, 8: 292–312.
Naito, HK 1985, Cholesterol: review of methods, check sample PTS 85-1, Pp 1-17, Chicago: American Society of Clinical Pathology, USA.
Nazıroglu, M, Karaoglu, A & Aksoy, A 2004, Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology, 195: 221-230.
Prusty, AK, Kohli, MPS, Sahu, NP, Pal, AK, Saharan, N, Mohapatra, S & Gupta, SK 2011, Effect of short term exposure of fenvalerate on biochemical and hematological responses in Labeo rohita (Hamilton) fingerlings. Pesticide Biochemistry and Physiology, 100:124–129.
Qadir, S, Latif, A, Ali, M & Iqbal, F 2014, Effects of Imidacloprid on the Hematological and Serum Biochemical Profile of Labeo rohita. Pakistan Journal of Zoology, 46: 1085-1090.
Reinhold, JG 1953, Manual determination of serum total protein, albumin and globulin fractions by biuret method. Standard Methods of Clinical Chemistry, 1: 88.
Rifai, N, Bachorik, PS & Albers, JJ 1991, Lipids, lipoproteins and apolipoproteins, In: Burtis CA, Ashwood ER, editors, Tietz Textbook of Clinical Chemistry. 3rd ed., WB Saunders Company, Philadelphia, Pennsylvania, pp. 809-861.
Saffari, S, Keyvanshokooh, S, Zakeri, M, Johari, S & Pasha Zanoosi, H 2017, Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquaculture Nutrition, 23: 611-617.
Santhosh, S, Sini, T, Anandan, R & Mathew, P, 2006, Effect of chitosan supplementation on ant tubercular drugs-induced hepatotoxicity in rats. Toxicology, 219: 53-59.
Saurabh, S & Sahoo, PK 2008, Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39: 223-239.
Sharifinasab, Z, Banaee, M, Mohiseni, M & Noori, A 2016, Vitamin C and chitosan alleviate toxicity effects of paraquat on some biochemical parameters in hepatocytes of common carp. Iranian journal of toxicology, 10: 31-40.
Shi, LG, Yang, RJ, Yue, WB, Xun, WJ, Zhang, CX, Ren, YS, Shi, L & Lei, FL 2010, Effect of elemental nano-selenium on semen quality, glutathione peroxidase activity, and testis ultrastructure in male Boer goats. Animal Reproduction Science, 118: 248–254.
Svobodova, Z, Pravda, D & Palackova, J 1991, Unified methods of haematological examination of fish. Research Institute of Fish Culture and Hydrobiology, Vodnany Methods, 20: 31.
Vani, T, Saharan, N, Mukherjee, SC, Ranjan, R, Kumar, R & Brahmchari, RK 2011, Deltamethrin induced alterations of hematological and biochemical parameters in fingerlings of Catla catla (Ham.) and their amelioration by dietary supplement of vitamin C. Pesticide Biochemistry and Physiology, 101: 16–20.
Venkataramana, GV, Rani, PN & Murthy, P S, 2006, Impact of malathion on the biochemical parameters of gobiid fish,
Glossogobius giuris (Ham).
Journal of Environmental Biology, 27: 119–122.
Wang, Y, Yan, X & Fu, L 2013, Effect of selenium nanoparticles with different sizes in primary cultured intestinal epithelial cells of crucian carp, Carassius auratus gibelio. International Journal of Nanomedicine. 8: 4007-4013.
Wang, Y, Xu, W, Zuo, R, Zhou, H, Bai, Y, Mai, K, Wang, D & Ai, Q 2016, Effect of dietary chitosan oligosaccharide complex with Ce (IV) on growth, immunity and disease resistance against Vibrio splendidus of sea cucumber, Apostichopus japonicas, Aquaculture Research, 48: 1158-1167.
Wootton, IDP 1964, Enzymes in blood, In: Churchill J, Churchill A, editors, Microanalysis in medical biochemistry. 4th ed., London (UK) Churchill, pp. 101-107.
Wroblewski, L & Ladue, JS 1955, Lactic dehydrogenase activity in blood. Proceedings of the Society for Experimental Biology and Medecine. 90: 210–213.
Yonar, ME, Yonar, SM & Silici, S 2011, Protective effect of propolis against oxidative stress and immunosuppression induced by oxytetracycline in rain bow trout (Oncorhynchus mykiss, W). Fish & Shellfish Immunology, 31: 318–325.
Yonar, ME & Sakin, F 2011, Ameliorative effect of lycopene on antioxidant status in Cyprinus carpio during pyrethroid deltamethrin exposure. Pesticide Biochemistry and Physiology, 99: 226–231.
Yonar, ME, Yonar, SM, Ural, MS, Silici, S & Düşükcan, M 2012, Protective role of propolis in chlorpyrifos-induced changes in the haematological parameters and the oxidative/ antioxidative status of Cyprinus carpio. Food and Chemical Toxicology, 50: 2703–2708.
Yonar, SM, Ural, MS, Silici, S & Yonar, ME, 2014, Malathion-induced changes in the haematological profile, the immune response, and the oxidative/antioxidant status of Cyprinus carpio: Protective role of propolis. Ecotoxicology and Environmental Safety, 102: 202–209.
Yonar, SM, Yonar, ME & Ural, M 2017, Antioxidant effect of curcumin against exposure to malathion in Cyprinus carpio. Cellular and Molecular Biology, 63: 68-72.
Yousef, MI, El-Demerdash, FM, Kamel, KI & Al-Salhin, KS 2003, Changes in some haematological and biochemical indices of rabbit induced by isoflavenes and cypermethrin. Toxicology, 189: 223–234.