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ABSTRACT 

Estimation and mapping of forest resources are preconditions for management, planning and research. In this 

study, we applied kriging interpolation of geostatistics for estimation and mapping of forest stock at-tributes in 

a natural, uneven-aged, unmanaged forest in the Caspian region of northern Iran. The site of the study has an 

area of 516 ha and an elevation that ranges from 1100 to 1450 m a.s.l. Field sampling was per-formed on a 75m 

× 200m systematic grid using 309 geo-referenced circular sample plots of 1000 m2 area. Experimental variograms 

were calculated and plotted for basal area (BA), volume (V) and stem density (N). Whereas the calculated vari-

ograms of BA and V exhibited spatial auto-correlation only after data stratification based on diameter size clas-

ses and tree species, the variogram of stem density displayed a moderate spatial structure that was fitted by a 

spherical model. Stem density was estimated by ordinary block kriging and the accuracy of estimation was 

validated by cross-validation result. We conclude that geostatistical approaches have the potential to more ac-

curately capture and describe the spatial variability of forest stock, and thus reduce the uncertainty in estimates 

of stem density as well as produce more accurate stem density maps of forests in comparison with the spatially 

uninformed classic method. Geostatistical methods provide a very suitable tool to derive more accurate esti-

mates of growing stock, particularly in structurally complex, unmanaged, uneven-aged forest such as this one 

from the Caspian region of northern Iran. 
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INTRODUCTION 

The implementation of close-to-nature silvi-

culture that aimed at conserving and restor-

ing unique, important and ecologically and 

economically endangered (due to human dis-

turbances and illegal exploitation)  Caspian 

forests of Iran (Abdollahpour & Assadi Atui, 

2005) that resemble natural forests, requires a 

thorough understanding of ecological pro-

cesses that have created the structures and 

composition of these natural archetypes. For-

tunately, natural mixed uneven-aged hard-

wood deciduous forests that encompass all 

three major development stages (i.e., the de-

cay, initial, and optimal stages; Leibundgut, 

1993, Korpel, 1995) still exist along the south-

ern part of the Caspian Sea and the north-fac-

ing aspects of Elborz Mountain in northern 

Iran (Sagheb-Talebi et al., 2004). These Cas-

pian forests are characterized by a high plant 

species diversity of more than 80 woody spe-

cies (Sagheb-Talebi et al., 2004) and afford a 

unique opportunity to study the spatial struc-

tures found in intact natural old-growth for-

ests. Although proper maps of spatial pat-

terns of trees are a prerequisite for forest plan-

ning and management, planners rarely have 

wall-to-wall coverage of spatially explicit tree 

stem maps that depict the spatial distribution 

of forest stock attributes (e.g., stem density, 
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basal area, and volume) over large areas. In-

stead, forest stock attributes are typically in-

ventoried using a sampling process that lacks 

spatial resolution of stock at-tributes between 

sample points. Further, non-spatial inde-

pendence suggests that many statistical tools 

and inferences may not be appropriate and a 

spatial extrapolation of results to any given 

point in the whole sample area may not be 

warranted. Thus, an un-biased interpolation 

method has to be employed for mapping for-

est stock attributes after sampling that per-

mits forest managers to more closely deline-

ate the major development stages based on 

natural spatial structures of tree species and 

enable researchers to more realistically model 

stand structures and dynamics. Geostatistics, 

which is concerned with the detection, mod-

eling and estimation of spatial dependence of 

continuously distributed or regionalized var-

iables (Isaak & Srivastava, 1989, Goovaerts, 

1997), is a useful tool to describe the spatial 

structure and pro-vide geo-referenced esti-

mates of forest attributes. 

 Although the spatial distribution of trees in a 

particular stand represents a point pat-tern of 

discrete objects (Dale, 2000), stand at-tributes 

such as basal area, volume stock and density 

can be thought to be directly influenced by 

different spatially continuous varia-bles such 

as solar radiation, soil characteris-tics and wa-

ter nutrient availability, thus al-lowing to be 

considered as spatially continuous (Kint et al., 

2003). 

 Geostatistics, thus, pro-vides a natural 

framework for estimation techniques in forest 

inventory sampling (Mandallaz, 1991) and 

has frequently been used to estimate and map 

forest resources based on forest-scale surveys 

(Samra et al., 1989, Biondi et al., 1994, Gun-

narsson et al., 1998, Tuominen et al., 2003, 

Montes et al., 2005, Freeman & Moisen, 2007, 

Tröltzsch et al., 2009, Brus et al., 2012), ena-

bling the production of geo-referenced data 

maps for basal area, density, standing volume 

and tree species groups at scales where these 

variables often reveal spatial auto-correlation. 

Following two studies in which geostatistics 

was applied to estimate and map forest stock 

at-tributes in a natural managed forest(Akha-

van et al., 2010) and a plantation forest (Akha-

van & Kia-Daliri, 2010) in the Caspian region 

of Iran, this study aimed at extending this ap-

proach to a natural, unmanaged forest in this 

region of Iran. This study specifically aimed 

at (1) investigating the spatial variability and 

spatial structure of forest stock attributes 

(stem density, basal area, and volume) using 

variogram analysis in geostatistics, (2) esti-

mating and mapping forest stock attributes 

using the geostatistical kriging interpolation 

method, and (3) examining whether kriging 

improves the estimation accuracy of these for-

est attributes in comparison with a spatially 

uninformed classic approach.  

 

MATERIALS AND METHODS 

Study Area 

Caspian forests along the southern part of the 

Caspian Sea, span the elevational gradient of 

north-facing aspects of Elborz Mountain in 

northern Iran, occur in five main vegetation 

types (i.e., Querco-Buxetum, Querco-Carpine-

tum, Parrotio-Carpinetum, Fagetum hyrcanum 

and Carpinetum orientale) and are remnant of 

the Tertiary era that extend for 800 km in an 

east to west direction (Sagheb-Talebi et al., 

2004). The study area (516 ha) is located in the 

northern part of the fourth district (Chelir) of 

the educational and research forest station of 

Tehran University (Kheiroud) at 51˚ 40' E lon-

gitude and 36˚ 32' N latitude (Fig. 1). Eleva-

tion varies from 1100 m to 1450 m above sea 

level and slopes range from 5% to 85%. The 

mean annual temperature, precipitation and 

relative humidity are 15.3 ˚C, 1458 mm, and 

83%, respectively. The climate is cold and wet 

in the winter and temperate in the summer 

without any dry season. The growing season 

is 270 days per year. The forest under investi-

gation is a typical naturally seeded, uneven-

aged, mixed hardwood old-growth stand in 

the Fagetum hyrcanum association that experi-

enced no silvicultural activity and has no 

known management history. The inventoried 

forest area is a mixture of broad-leaf decidu-

ous tree species. The dominant tree species 

are beech (Fagus orientalis Lipsky) and horn-



63 
 

 

beam (Carpinus betulus L.), alongside with 

maple (Acer velutinum Boiss. and A. cappadoci-

cum Gled.), alder (Alnus subcordata C.A.M.) 

and oak (Quercus castaneifolia C.A.M.). Large 

topographic variation contributes to the het-

erogeneous nature of the stand (Fig. 1). 

 

 
Fig. 1. Study area and sampling grid (75 m × 200 m). 

 

Data collection 

A network with 75 m (N-S) × 200 m (W-E) sys-

tematic rectangular grid was used for sapling. 

At each grid point, we established a circular 

sample plot of 1000 m2 surface area where we 

recorded the UTM coordinates of the plot cen-

ter (Fig.1) and the diameter at breast height 

(d.b.h. in 1.3 m above the ground) of each tree 

with a d.b.h. that exceeded 7.5 cm. Further, 

the height of the closest tree to its respective 

plot center point and the largest tree in each 

plot were measured for volume estimation. 

The inventory was accomplished in the sum-

mer of 2011. Stand-level attributes of interest, 

i.e., basal area (BA), volume stock (V) and 

stem density (N) were computed for all trees 

as well as for trees in different size classes 

(i.e., small size [d.b.h. ≤ 32.5 cm, S], medium 

size [32.5< d.b.h. ≤ 52.5, M], large size [52.5 < 

d.b.h. ≤72.5 , L], and extra large size [d.b.h. > 

72.5 cm, EL]; after Sagheb-Talebi et al., 2005), 

and separately for the two most dominant 
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tree species (i.e., beech and hornbeam) that 

accounted for about 75% of the total species 

frequency in the study area. 

 

Geostatistical approach for spatial auto-cor-

relation analyses 

To identify and describe the spatial depend-

ency (i.e., spatial auto-correlation) of BA, V 

and N of all trees and the diameter size clas-

ses of the two dominant tree species, we used 

variogram (semi-variance) analysis as our ge-

ostatistical approach. Three parameters are 

commonly used to describe and model the be-

havior of variogram: range, sill and nugget ef-

fect. The range is the distance where the spa-

tial correlation disappears and the variogram 

levels off, the sill corresponds to the height of 

the variogram after leveling off, and the nug-

get effect is represented by the intercept of 

variogram on the ordinate axis. The ratio of 

the nugget effect to the sill is known as the rel-

ative nugget effect. This is a measure of the 

percentage of the variability in the data from 

sources other than spatial auto-correlation. A 

low relative nugget effect (≤ 25%) is a sign of 

strong spatial auto-correlation where the ap-

plication of geostatistical techniques is partic-

ularly beneficial. Nugget effects between 25% 

and 75% indicate moderate spatial auto-cor-

relation and high relative nugget effect 

(≥75%) can indicate either weak spatial auto-

correlation in the population or spatial pat-

terns at scales smaller than the sampling dis-

tance (Cambardella et al., 1994, Ganawa et al., 

2003, Freeman & Moisen, 2007). In the current 

study, all the experimental variograms ob-

tained were modeled using either a pure nug-

get effect or an additional spherical model. 

The selection criterion used was the minimal 

residual sum of squares. The spherical model 

is given by (Webster & Oliver, 2000):  
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Where h, c0, c, and a represent a particular lag 

vector, nugget effect, structural variance, and 

range, respectively. After normalization of 

the data, only omnidirectional (isotropic) 

variograms were calculated, because experi-

mental variogram surfaces showed no vario-

gram anisotropy. By common convention, the 

analysis was restricted to distances of half of 

the study area dimension (i.e., 2200 m). We 

further used the Kriging interpolation 

method as our geostatistical approach for 

possible interpolating values among sample 

plots and mapping the distribution of BA, V 

and N. Kriging computes surfaces of the best 

linear unbiased estimation of regionalized 

variables at un-sampled points based on the 

spatial structure defined by the experimental 

semi-variogram. Ordinary kriging (the most 

common type of kriging in practice, particu-

larly in environmental sciences) of the region-

alized variable x   at point  i   is given by (Web-

ster & Oliver, 2000):   





n

i

ii xzxz
1

)()(ˆ 
                                         (2) 
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the nonbiased condition: 
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Kriging may be used for estimation at a single 

point (point kriging) or over an area (block 

kriging). In this study, since the mean is as-

sumed to be stationary and unknown and be-

cause no large-scale trend was observed, or-

dinary block kriging without trend was used. 

A 32 m × 32 m mesh (approximately the same 

area as a sample plot to emphasize the local 

variation around the sampling plots) was 

used to discretize the study area for block 

kriging interpolation. The estimates were ob-

tained using the nearest 16 data plots within 

the maximum effective range of variograms 

that corresponded to the scale of auto-corre-

lation. 

A cross-validation (leave-one-out) was per-

formed for selected datasets to evaluate the 
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kriging results. Cross-validation was evalu-

ated by calculating the Mean Bias Error 

(MBE), which should ideally be equal zero, 

because kriging is unbiased (Webster & Oli-

ver, 2000):  
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The accuracy of kriging was measured using 

the Root Mean Square Error (RMSE):  
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 Where 
)(ˆ ixz

 is the estimated value of re-

gionalized variable at the location of i ; N is  

The number of sample plots and 
)( ixz

 is the 

mean value of measured samples of interest-

ed attribute. The software package used for 

geostatistical analysis was GS+ version 9 

(Gamma Design Software, LLC, Plain Well, 

MI).  

 

Point pattern analyses 

To further understand the spatial dependen-

cies of BA, V and N, we computed several in-

dices for quadrat counts (e.g., variance-to-

mean ratio, Morisita’s index of dispersion, 

and Morisita’s standardized index of disper-

sion) to analyze separately the spatial point 

patterns for all trees, trees in different diame-

ter size classes, and for beech and hornbeam. 

The variance-to-mean ratio, attributed to 

Fisher et al. (1922) is one of the oldest and sim-

plest measures of dispersion. The ratio        (

XS /2

) usually called the index of disper-

sion (I) (Bailey & Gatrell, 1995) and is based 

on the observation in a random pattern, de-

scribed by the Poisson distribution, the vari-

ance equals the mean, so I = 1 for a random 

pattern. Ratios larger than 1 indicate clump-

ing, while smaller ratios indicate regular or 

uniform pattern. The other frequently used 

quadrat-based dispersion index is the Stand-

ardized Morisita index of dispersion. Smith- 

Gill (1975) set out to improve Morisita's index 

(Morisita, 1962) just described by putting it on 

an absolute scale from -1 to +1. To calculate 

this index, Morisita's index of dispersion (Id) 

was first calculated, along with two critical 

values of the uniform index (Mu) and the 

clumped index (Mc): 
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Where n is the sample size, x is the number of 

individuals, 
2

025.0  and 
2

975.0  are the values  

 

of chi-squared with (n-1) degrees of freedom 

that have 2.5% or 97.5% of the area to the  

right. Morisita's Id is 1 for a random distribu-

tion, >1 for a clumped distribution, and <1 for  

a regular/uniform distribution. The Stand-

ardized Morisita index (Ip) is then calculated 

by one of the four following formulae:  

 

When  

;1 cd MI      (11) 

When  ;1 dc IM       (12)  

When  ;1 ud MI       (13) 

When   

;1 du IM 









 


u

ud
p

M

MI
I 5.05.0

            (14)  

The Ip ranges from -1.0 to +1.0, with 95% con-

fidence limits at +0.5 and -0.5. Random pat-

terns give an Ip of zero, clumped patterns 

give an index value of above zero and uni-

form patterns below zero. 
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RESULTS 

Sampling 

A total of 309 plots were sampled in the study 

area. Normalization tests showed that the 

data were not normally distributed, conse-

quently, the data were transformed using the 

square root and log transforms to more 

closely approximate normal distributions. Ta-

ble 1 shows the summary statistics of the sam-

ple plots. The distribution of tree sizes in the 

study area reveals an uneven-aged stand di-

ameter distribution with the majority of 

treesin the small and medium tree size classes 

(Table 2) and a few very large trees up to 300 

cm d.b.h. (Fig. 2).  

 

Geostatistical analyses 

Because we did not find any variogram aniso-

tropies, we fitted only omni-directional vario-

grams using a spherical model to which a 

nugget effects was added (Fig. 3, Table 3). No 

spatial auto-correlation was revealed in the 

experimental variograms for BA and V. Con-

sequently, these attributes represented a pure 

nugget effect. However, N showed a moder-

ate level of spatial auto-correlation (50%). 
 

Table 1. Summary statistics of 309 sample plots 

Attribute Mean Min Max SD CV  

% 

Skewness Kurtosis 

BA (m2 ha-1) 35.8 8.6 99.6 11.5 32.2 1.34 5.13 

V (m3 ha-1) 459.7 95.1 1452.4 191.7 41.7 1.37 4.15 

N (n ha-1) 279 20 1140 166.2 59.6 1.61 3.86 

SD: Standard Deviation; CV: Coefficient of Variation 

 

Table 2. Frequency and proportion of trees in the four diameter classes in the study area 

Relative frequency Absolute frequency Diameter class 

64.6% 5561 S 

17.4% 1493 M 

9.8% 850 L 

8.2% 708 EL 

100% 8612 Total 

S, Small size (d.b.h. ≤ 32.5 cm); M, Medium size (32.5<d.b.h. ≤ 52.5); 

L, Large size (52.5<d.b.h. ≤ 72.5); and EL, Extra Large size (d.b.h. > 72.5 cm) 

 

Table 3. Characteristics of fitted variograms for the three attributes of basal area (BA), volume (V), and stem density (N) 

Attribute Lag  

(m) 

Fitted  

model 

Nugget  

effect 

Sill 

 

Range 

(m) 

R2 

% 

SpD 

 % 

BA (m2 ha-1) 130 Pure nugget effect 0.86 0.89 - 7 96.6 

V (m3 ha-1) 130 Pure nugget effect 0.11 0.12 - 37 91.6 

N (n ha-1) 130 Spherical 0.11 0.22 533 93 50 

SpD (Spatial Dependence) = (SpD ≥75%, Weak; 25%< SpD <75%, Moderate; SpD ≤ 25%, Strong) 

 

 
Fig. 2. Diameter distribution of trees in the study area.
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Because BA and V did not show any spatial 

auto-correlation, kriging interpolation was 

used only for N (Table 4).  

A comparison of tables 1 and 4 reveals that the 

estimated mean stem densities are not very dif-

ferent.  

However, compared to the spatially unin-

formed classic method, a variance reduction in 

the estimate of N of approximately 72% was 

achieved using kriging interpolation.  

Figure 4 shows a kriging map and an error map 

for stem density over the study area. 

 
Fig. 3. Graphs of isotropic variograms and fitted models for the three attributes of basal area (BA), volume (V), 

and stem density (N) in the study area. Solid lines represent the models, filled circles represent point-estimates. 

The minimum number of pairs for each lag. distance is 274 

 

Table 4. Summary statistics of kriging results for forest stem density (n ha-1) 

Mean Min Max SD CV% 

260 67 597.32 82.5 31.7% 

.

Evaluating the kriging results of N with the 

Mean Bias Error and Root Mean Square Error 

and their respective relative values (Table 5).  

revealed a low relative Mean Bias Error of less 

than 10% (MBEr = 6.9%). A cross-validation 

graph of stem density confirms the accuracy of 

our estimation (Fig. 5). 

Variography after data classification based on 

tree size classes and species 

Although BA and V did not show any spatial 

variability when considering all trees, the re-

sults were quite different when we computed 

the experimental variograms by tree size clas- 

ses and species, individually.  
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When consider-ing trees of different diameter 

size classes, the spatial variability of BA (Fig. 6) 

and V (Fig. 7) clearly weakens from the small 

diameter size class towards the extra large 

class, with an approximately moderate spatial 

dependence observed in the small and medium 

size classes and only a pure nugget effect in the 

large and extra large classes. Similarly, when 

examining the spatial variability of BA by tree 

species, both beech and horn-beam individu-

ally exhibited moderate spatial auto-correlation 

(Fig. 8) that was completely masked when ex-

amining the spatial variability of all species 

(Fig. 6). 

 

Table 5. Validation results of kriging interpolation for stem density (n ha-1) 

MBE RMSE MBEr RMSEr 

19.4 147.7 6.9% 52.9% 
MBE: Mean Bias Error; RMSE: Root Mean Square Error; MBEr: relative MBE; RMSEr: relative RMSE 

 
Fig. 4. Kriging map (a) and error (standard deviation) map (b) of stem density in the study area 

 

 
Fig. 5. Cross-validation graph for stem density (N). The solid line represents the regression and the dotted line is 

the 45- degree line; the best unbiased estimation occurs when the solid line coincides with the dotted line 
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Spherical model (Co + C = 0.17720; Ao = 433.95; r2 = 0.893 Rss = 7.133E-04)        

 

 
 

Spherical model (Co = 0.16508; Co + C = 0.24902; Ao = 350.30; r2 = 0.691 Rss = 1.712E-03) 
 

   
 

Linear model (Co = 0.38725; Co + C = 0.40400; Ao = 1433.85; r2 = 0.118 Rss = 2.824E-03) 

 
Linear model (Co = 1.45631; Co + C = 1.56900; Ao = 1433.85; r2 = 0.205 Rss = 0.0665) 

 
Fig. 6. Graphs of isotropic variograms and fitted models for basal area (BA) based on the four diameter size clas-
ses in the study area. Solid lines represent the models, filled circles represent point-estimates. Minimum number 

of pairs for each lag distance is 258. Note: S= Small size, M= Medium size, L= Large size, and EL= Extra Large 
size. 

 
Point pattern analyses 
Point pattern analyses revealed that the spatial dis-
tributions of all trees, the two dominant tree  

 
 
species and all diameter size classes except the extra 
large class were clumped in the study area (Table 6).
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Table 6. Spatial patterns for all trees, size classes and the two dominant tree species in the study area  

 Index  

 XS /2

 
Id Ip Spatial patterns 

All trees 9.91 1.32 0.500 Clumped* 
S 15.91 1.83 0.501 Clumped* 
M 2.6 1.33 0.500 Clumped* 
L 1.58 1.21 0.500 Clumped* 

EL 0.958 0.98 -0.139 Uniform* 
Beech 6.47 2.01 0.501 Clumped* 

Hornbeam 14.86 1.87 0.501 Clumped* 

variance-to-mean ratio; Id, the Morisita’s index; Ip, the Standardized Morisita’s index; *, significant at p<0.05. 
Other abbreviations and explanations are the same as for Table 2. 

 
Spherical model (Co = 4.32000; Co + C = 12.97000; Ao = 350.00; r2 = 0.846 Rss = 7.28) 

 
Spherical model (Co = 15.73000; Co + C = 31.47000; Ao = 306.00; r2 = 0.574 Rss =  63.4) 

 

 
Linear model (Co = 2.122; Co + C = 2.314; Ao = 1433.85; r2 = 0.286 Rss = 0.125)   

 
Linear model (Co = 4.772; Co + C = 5.323; Ao = 1433.87; r2 = 0.407 Rss = 0.597) 

 

Fig. 7. Graphs of isotropic variograms and fitted models for volume (V) based on the four diameter size classes in 
the study area. The abbreviations and explanations are the same as for Fig. 6. 
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Spherical model (Co = 1.499; Co + C = 3.184; Ao = 531.00; r2 = 0.962 Rss = 0.0792) 

 
Spherical model (Co = 0.822; Co + C = 1.614; Ao = 382.97; r2 = 0.964 Rss = 0.0120)  

 

Fig. 8. Graphs of isotropic variograms and fitted models for basal area (BA) for the two most abundant tree spe-

cies in the study area. Solid lines represent the models, filled circles represent point-estimates. Minimum number 

of pairs for each lag distance is 274. 

 

DISCUSSION 

The spatial structure of the three forest attrib-

utes (i.e., basal area, volume and stem density), 

expressed by their spatial autocorrelation, dif-

fered in this unmanaged natural uneven-aged 

deciduous forest. Whereas stem density be-

haved as a regionalized variable and exhibited 

a moderate spatial structure (Table 3), overall 

stand basal area and volume did not show any 

spatial auto-correlation and exhibited a pure 

nugget effect (Fig. 3). The reason for these ap-

parent differences can be found in the spatial 

distribution of trees of different diameter size 

classes. While smaller trees exhibited a 

clumped spatial distribution, larger trees in-

creasingly tended toward a random and regu-

lar spatial distribution. This development to-

ward spatial randomness or regularity with in-

creasing tree size has been demonstrated in 

many forest types (e.g., Szwagrzyk & Czer-

wczak, 1993, Zenner & Peck, 2009) and is the 

main reason why the kriging interpolation 

method embedded in a geostatistical approach  

 

 

was able to estimate stem density more accu-

rately to reduce the variance for stem density 

estimation by approximately 70%, and to pro 

duce a smaller coefficient of variation with ac-

ceptable estimation accuracy (MBEr ≈ 7%; Ta-

ble 5) in comparison with the spatially unin-

formed classic approach (Table 1).  

Because smaller trees were more numerous 

than larger trees in this old-growth forest (Fig. 

2) and each individual tree contributes equally 

to stem density, the moderate spatial structure 

of the stem density of the stand is largely driven 

by the clumped spatial pattern of the smaller 

trees (Table 6). This is in stark contrast to the 

observed lack of spatial structure of the stand 

basal area and volume (Fig. 3) that are princi-

pally driven by the spatial randomness of the 

larger trees that, despite their low density, ac-

count for a large proportion of the growing 

stock. Thus, the spatial distribution of larger 

trees has more influence on the spatial structure 

of the growing stock (basal area and volume) in 
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forests than that of small and medium-sized 

trees that typically exhibit a moderate spatial 

structure for basal area, and volume (Figs. 6 

and 7). This lack of spatial structure of basal 

area and volume appears to be independent of 

changes induced by management, as was 

shown for a stand in the nearby Namkhane dis-

trict (Fig. 1) that was subject to a management 

plan that prescribed a close-to-nature silvicul-

ture (Akhavan et al., 2010) and resulted in a di-

ameter distribution that was similar to that of 

the unmanaged Chelir forest investigated in 

this study. Because larger trees were retained in 

the Namkhane forest following two harvest en-

tries (Fig. 9), no spatial structures were detected 

for stand basal area and volume in Namkhane 

as well. The spatial structure of stem density 

differed between. The unmanaged and man-

aged stands, however, and was most likely in-

fluenced by management interventions such as 

road construction, plantation, and harvesting 

that may have masked a clear signal of the spa-

tial structure of stem density in the Namkhane 

district (Akhavan et al., 2010). The spatial struc-

tures of stem density and basal area in the cur-

rent study are 

 
Fig. 9. Diameter distribution of trees in the Namkhane district; after Akhavan et al. (2010).  

 

quite different from those reported by Akhavan 

and Kia-Daliri (2010), who applied the same 

geo-statistical approach in an eighteen year-old 

maple (Acer velutinum Boiss.) plantation in the 

Caspian region of Iran. In that study, stem den-

sity did not exhibit any spatial structure 

whereas basal area did. This was likely due to 

the regular spacing of the trees and the homo-

geneity of tree sizes in the plantation that was 

still in the early stage of stand development. 

Neither windstorms and droughts nor intra-

specific competition had been strong enough to 

remove stems and break up the initial regular 

spatial distributions (initial planting space of 3 

m × 3 m) after 18 years. Consequently, the reg-

ularity of the spatial distributions of the plants 

remained intact and no spatial auto-correlation 

was found for stem density. In contrast, the ho-

mogeneity of tree sizes in the maple plantation 

had a low coefficient of variation for d.b.h 

(35%), which was less than half of the coeffi-

cient of variation for d.b.h. observed in this 

study (79%), was sufficient to induce spatial 

auto-correlation for stand basal area. However, 

it is expected that as stem numbers decline until 

harvesting time (at approximately 80 years), 

stem density will exhibit spatial auto-correla-

tion and the spatial structure of basal area will 

disappear as the homogeneity of tree sizes de-

creases. The low, medium and high density ar-

eas that are typically associated with mature, 

middle-aged, and young stands, respectively, 

have become clearly visible in the kriged stem 

density maps (Fig. 4a). These kriged stem den-

sity maps, thus, permit an indirect estimation of 

forest stock for any point in the area. For exam-

ple, the point I on the digital map of figure 4a 

has a stem densi-ty of 170 n ha-1. Based on the 

diameter size classification in table 2, there are 

64.6% (110 trees), 17.4% (30 trees), 9.8% (16 

trees), and 8.2% (14 trees) of trees in the small, 

medium, large and extra large size classes at the 

point I, respectively. Therefore, if we use the 

mid-point value of each size class (namely, 20, 

42.5 and 62.5 cm for the first three size classes, 

respectively; for the largest size class this de-

pends on the maximum diameter size in the 

studied area), we can indirectly estimate the 

growing stock at point I. To obtain a more pre-

cise estimate, more and narrower size classes in 
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the upper range of the size distribution would 

of course be beneficial due to their relatively 

larger impact on forest volume stock. Nonethe-

less, the advantage of a geostatistical approach 

that enables the precise quantification of the 

statistical error in a kriged error map (Fig. 4b) 

is that it identifies areas with higher errors that 

can then be covered with extra sample plots to 

reduce this estimation error. Each tree species 

has a specific physiological age and longevity 

that is reflected in a specific auto-correlation di-

agram (i.e., variogram) that may be masked 

when investigating the overall stand structure. 

While we failed to detect any spatial au-to-cor-

relation for basal area when analyzing all tree 

species that were present at the same time (Fig. 

3), we did detect a moderate spatial structure 

for basal area for the two dominant species (i.e., 

beech and hornbeam with clumped spatial dis-

tribution; Table 6), individually (Fig. 8). Hence, 

it appears that the spatial structures of growing 

stock attributes in mixed stands, which are of-

ten uneven-aged in this region, may be weaker 

than those observed in pure and even-aged 

stands, particularly if not analyzed separately 

by species. For this reason, Akhavan and Kia- 

Daliri (2010) may have been able to detect a spa-

tial structure for basal area in their plantation 

forest. In general, we hypothesize that if the di-

ameter distribution observed in a natural forest 

has a narrower range (e.g., no larger trees pre-

sent) and has no missing size classes (i.e., is 

without any interruption), the growing stock 

appears to have a stronger spatial structure 

with a higher auto-correlation, but this tenta-

tive hypothesis needs to be put to more rigor-

ous testing. Geostatistical approaches were in-

strumental for the identification of the spatial 

structures of stem density in this natural un-

managed forest. In close-to-nature forestry, 

which is increasingly being applied throughout 

the world, kriged stem density maps can pro-

vide greater assistance for forest management 

planning and for the identification of forest de-

velopment stages (Akhavan et al., 2012) than 

traditional tree size class maps. Whereas the 

identification of develop-ment stages is 

straightforward and fairly easy in monospecific 

and even-aged forests, the detection of these 

stages is often difficult and imprecise in mixed 

and uneven-aged forests due to different habi-

tat requirements of tree species. Here, kriged 

stem density maps could make an effective con-

tribution toward a more accurate identification 

and delineation of these stages. Spatial interpo-

lation of forest tree attributes using geostatisti-

cal approaches (kriging) can provide useful 

outputs at the regional scale as well, facilitating 

rapid spatial analyses that enable the user to 

test the influence of different factors on forest 

stock attributes (Merganič et al., 2004). These 

maps can be very useful for forest owners and 

man-agers as a suitable tool to gain more in-

sight into the spatial distribution of the grow-

ing stock. This information is also beneficial as 

a guide map for writing forest management 

plans, i.e., to identify harvesting areas and to 

plan road networks, inter-planting, and silvi-

cultural interventions (i.e., thinning and light 

thinning) that are based on forest density and 

stock distribution, to ensure that forestry is 

done more sustainably. 
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 چکيده

 جينگکري يابيدرون روش از مطالعه اين در. است تحقيق و ريزيبرنامه مديريت، براي ضروري نياز يک جنگلي منابع بنديپهنه و برآورد

 لشما خزري ناحيه در نشده مديريت و ناهمسال طبيعي، جنگل يک در جنگل موجودي متغيرهاي بنديپهنه و برآورد منظور به آمارزمين

 زميني بردارينمونه. است بوده متر 1551 تا 1111 بين دريا سطح از آن ارتفاع و هکتار 515 بررسي مورد منطقه مساحت. شد استفاده ايران

 براي تجربي هايواريوگرام. شد انجام مترمربعي 1111 ايدايره نمونه قطعه 313 با و متر 211 55  ابعاد به منظم ايشبکه براساس

 وسيلههب که داد نشان متوسط مکاني ساختار يک جنگل تراکم به مربوط واريوگرام. شد محاسبه جنگل تراکم و حجم زميني،رويه متغيرهاي

 و قطري هايکلاسه براساس هاداده بنديطبقه از پس تنها جنگل حجم و زمينيرويه متغيرهاي کهحالي در شد؛ داده برازش کروي مدل

 صحت و شد يابيدرون و برآورد بلوکي و معمولي کريجينگ روش به جنگل تراکم متغير. دادند نشان خود از مکاني ساختار درختان، گونه

 عدم اهشک و جنگل موجودي مکاني تغييرات تبيين توانايي داراي آمارزمين که داد نشان نتايج. گرديد بررسي متقابل ارزيابي روش به آن

 بنابراين. باشدمي کلاسيک آمار هايروش به نسبت جنگل تراکم از دقيق بنديپهنه هاينقشه توليد نيز و جنگل تراکم برآورد در قطعيت

 ناحيه در بررسي مورد جنگل همانند نشده مديريت و ناهمسال طبيعي، هايجنگل در موجودي برآورد منظوربه مناسبي ابزار آمارزمين

  .باشدمي ايران خزري
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