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ABSTRACT 
This research was conducted to investigate  spatial variability and estimate  tree attributes in a plantation 
forest in the Caspian region of Iran using geostatistical analysis. Sampling was performed based on a 
50m×125m systematic grid in a maple stand (Acer velutinum Boiss) 18 years of age using circular samples of 
200m2 area. Totally, 96 sample plots were measured in 63 hectares and 14.25 hectare was inventoried as full 
census area. Experimental variograms for forest stem basal area, stem density and tree height attributes 
were calculated and plotted using the geo-referenced inventory plots. The calculated variograms of basal 
area and height showed a high spatial auto-correlation, which is fitted by spherical model. However, stem 
density showed a large nugget effect. Estimations for basal area and height interpolated by ordinary block 
kriging and cross validation results showed that all the estimations were accurate. Furthermore, the 
estimated kriged mean of basal area showed no significant difference to the real mean in the full census 
area. Therefore, geostatistical analysis is able to capture and explain the spatial variability as well as 
estimate tree attributes (not stem density) in this kind of plantation forest, accurately. 
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INTRODUCTION 
Estimation of forest resources is an 
inescapable premise of management, 
planning and research (Husch et al., 1982). 
However, conventional statistics are 
generally inadequate to describe spatially 
correlated data because some of the spatially 
correlated attributes have properties that 
cannot be analyzed through conventional 
statistics which take into account only non-
spatial relationship. When spatial 
dependence is present, near neighbors are 
more similar than those futher apart, i.e., 
data are auto-correlated. Geostatistics is a 
useful tool to describe spatial variability and 
estimate forest variables. It is the branch of 
applied statistics that is concerned with the 
detection, modeling and estimation of 
spatial dependence of continuous distrib-

uted variables called regionalized variables 
(Isaak and Srivastava, 1989; Goovaerts, 
1997). Although spatial distribution of trees 
in a particular stand represents a point 
pattern of discrete objects (Dale, 2000), tree 
attributes i.e., basal area, height and density 
can be thought to be directly influenced by 
different spatially continuous variables such 
as solar radiation, soil characteristics and 
water nutrient availability, thus allowing 
considered spatially continuous (Kint et al., 
2003). Nowadays, geostatistical methods 
have found their applications in forestry. 
Geostatistics provides a natural framework 
for estimation techniques in forest inventory 
sampling (Mandallaz, 1991). The motivation 
for using geostatistical analysis is that 
classical design-based methods are often 
weak for small area estimation within global 
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inventories, and there is also an increasing 
demand to use regional or national 
inventory data for local estimation purposes 
(Mandallaz, 1993). Accurate knowledge of 
spatial structures is needed to inform 
silvicultural guidelines and management 
decisions for long term sustainability of 
forests. Estimating the amount of variation 
due to spatial dependence at different scales 
provides a basis for designing effective 
experiments (Jeffers, 1982) and geostatistics 
has been used to optimize the sampling 
design (Bellehumeur and Legendre, 1998; 
Hernández and Emery, 2009) and also for 
estimation and mapping of forest resources 
based on forest scale surveys (Samra et al., 
1989; Biondi et al., 1994; Gunnarsson et al., 
1998; Tuominen et al., 2003; Montes et al., 
2005; Freeman and Moisen, 2007; Pierce Jr et 
al. 2009; Akhavan et al., 2010), which 
produce geo-referenced data map on basal 
area, density or standing volume at scales 
where these variables usually show spatial 
auto- correlation.  
The first objective of the present study is to 
use the variography and kriging methods of 
geostatistics to describe and analyze the 

spatial variability of tree attributes namely, 
basal area, height and density as well as to 
map them in a plantation forest in northern 
Iran. The second objective is to consider if 
kriging would improve the estimation 
accuracy comparison to classical approach.   
 
MATERIALS AND METHODS 
Study area 
This research was accomplished in summer 
2006 inside an 18 years plantation forest, 
located in the north of Iran, Caspian region. 
Elevation varied from 200m to 450m above 
sea level (fig 1). The plantation has a surface 
area of 63 ha. Dominant tree species is 
maple (Acer velutinum Boiss.) which were 
planted by 3m×3m spacing after partially 
clear cutting, inside the natural forest in 
1989. Geographical coordinates for the 
approximate center of the area are 50˚ 48' E 
longitude and 36˚ 38' N latitude. Annual 
mean temperature and precipitation are 15.7 
˚C and 923 mm, respectively. The slope of 
the study domain varies from 10% to 65%. 
There was no silvicultural intervention in 
this area when the study started. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Study area and sampling grid 
 

Fig 1 Study area

Samplingm
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Field measurements 
We used a systematic grid for sampling 
strategy. Based on surface area (63 ha) and 
optimal number of sample plots for 
variography in geostatistical approach (at 
least 100 samples), a network with 50m (N-
S) ×125m (W-E) grid was designed for 
sampling (figure 1). The sample plots were 
in circular shape with surface area of 200m2. 
Diameter at breast height (d.b.h. in 1.3m) 
was recorded on each tree in the plot whose 
d.b.h. exceeded 7.5cm. Also the height of the 
nearest tree to each plot center point was 
measured. The UTM coordinates were 
recorded for each sample plot center, as 
well. The interested attributes were forest 
stem basal area (BA), stem density (N) and 
tree height (H). 
Furthermore, in order to obtain the real 
mean of BA, a part of the study area was 
selected randomly for full census inventory. 
The surface area was 14.25 ha which 
contained 32 sample plots of the so called 
grid (figure 1).   
 
Spatial auto-correlation analysis 
A basic principle of geostatistics is that 
samples located closer in space are more 
related and therefore, more similar than 
distant ones and their attributes are more 
continuous (Isaak and Srivastava, 1989; 
Cressie, 1993; Goovaerts, 1997).  In general, 
geostatistics consists of two steps: 
variography and kriging (Cressie, 1993).  
 
Variography 
The semi-variogram (also referred to as 
variogram for simplicity), a statistical model 
of structural spatial dependence, is the most 
common tool in geostatistics for 
characterizing spatial continuity (Isaaks and 
Srivastava, 1989). The variogram indicates 
the degree of similarity among the values of 
a variable when the samples are at 
sequential distance increments called lag 
distances, away from each other and in a 
specified direction. The semi-variance 
function is thus estimated from each lag 
distance and direction by following formula 
(Webster and Oliver, 2000): 

[ ]∑
=

+−=
)(

1

2)()(
)(2

1)(ˆ
hN

i
hixzixz

hN
hγ      (1) 

Where )(ˆ hγ is the semi-variance estimator 
for N  data pairs, separated by a particular 
lag vector of h . )( ixz  and )( hxz i +  are 
the values of regionalized variable x  at 
locations of i and hi + .  
Three parameters are commonly used to 
describe and model the behavior of 
variograms: range, sill and nugget effect. The 
range is the distance where the spatial 
correlation disappears and the variogram 
levels off. The height of the variogram after 
leveling off is known as the sill. The 
intercept of the variogram on the ordinate 
axis is the nugget eff\ect which represents 
the random component of the spatial 
structure. A variogram can be isotropic 
(omni-directional) when the spatial 
dependence is a function of the distance 
between the samples only and anisotropic 
(directional) when the spatial dependence is 
also a function of the direction.  
The first step in kriging is to fit a model to 
the experimental variogram. In the current 
study, all the experimental variograms 
obtained were modeled using spherical 
model to which a nugget effect was added. 
The selection criterion used was the minimal 
residual sum of squares. The spherical 
model is given by:   
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where 0c , c  and a  represent nugget variance, 
structural variance and range, respectively.  
 
Kriging 
Kriging computes surfaces of the best linear 
unbiased estimation of regionalized 
variables at un-sampled points based on the 
spatial structure defined by the 
experimental semi-variogram. Ordinary 
kriging )(ˆ xz (the most common type of 
kriging in practice, particularly in 
environmental sciences) of the regionalized 
variable x  at point i  is given by (Webster 
and Oliver, 2000):    
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Where, 
iλ  is the weight associated with 

value of )( ixz at the sampled point i  with 
the nonbiased condition: 
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Kriging may be used for estimation at a 
single point (point kriging) or over an area 
(block kriging). In this study, since the mean 
is assumed stationary and unknown as well 
as no large-scale trend was observed, 
ordinary block kriging without trend was 
used. A 15m×15m mesh (approximately the 
same area as a sample plot to emphasize the 
local variation around the sampling plots) 
was used to discretize the study area for 
estimation. The estimations were done on 
the nearest 16 data plots, within the 
maximum effective range of variograms 
which corresponds to the scale of auto-
correlation.  
 
Validation 
We used cross validation approach. All the 
samples were excluded one by one from the 
data set and estimated again by kriging 
using the remaining samples. Then 
measured data and estimated values were 
compared to evaluate the kriging results 
(Webster and Oliver, 2000). 
Cross validation was evaluated by 
calculation of Mean bias Error (ME) which 

should ideally be equal to zero, because 
kriging is unbiased (Webster and Oliver, 
2000):   
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The accuracy of kriging was measured using 
Root Mean Square Error (RMSE):  
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The software package used for geostatistical 
analysis was GS+ version 9 (Gamma Design 
Software, LLC, Plain well, MI). 
 
RESULTS 
Sampling 
In total, 96 sample plots were measured in 
the study area. Normalization test showed 
that the distributions of the data are 
approximately normal and there is no need 
for transformation. Table 1 shows the 
summary statistics of the sample plots. 
 
Geostatistical Analysis 
Variography 
We calculated experimental variograms for 
forest stem basal area (BA), stem density (N) 
and tree height (H). Variogram anisotropies 
were not found; consequently, only omni- 
directional variograms fitted using spherical 
model, to which nugget effects were added. 
Results are shown in table 2 and figure 2. 
 

Table 1. Summary statistics of sample plots 
Attribute No. of 

samples 
Mean Min Max SD CV  

% 
Skewness 

BA (m2/ha) 96 12.13 0.66 30.86 5.73 47.24 0.09 
N (n/ha) 96 779.16 50 1550 372.16 47.76 0.04 
H (m) 96 13.76 8.00 23.75 2.89 21.00 0.48 

SD: Standard Deviation; CV: Coefficient of Variation 
 

Table 2. Characteristics of fitted variograms for tree attributes 
Attribute Lag 

(m) 
Variogra

m 
Fitted 
model 

Nugget 
effect 

Sill 
 

Range 
(m) 

R2 

% 
SP 
% 

BA (m2/ha) 50 Isotropic Spherical 5.9 23.6 246 77.0 75 
N (n/ha) 58 Isotropic Spherical 80000.0 140200.0 200 66.3 43 
H (m) 60 Isotropic Spherical 5.3 10.6 527 87.0 50 

SP% (Structured Part) = (Sill - Nugget/Sill)×100 
 

Comparison the ranges of auto-correlation 
reveal that among three mentioned attributes, 
height has the largest auto-correlation range 
while density has the shortest one. At the 

same time, the structured part (SP%) of 
density is below 50% which is an indication of 
existence a fairly high nugget effect in the 
experimental variogarm (fig 2b). 
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Fig 2. Isotropic experimental variograms and the fitted spherical models for the three attributes 
 
Kriging 
Ordinary block kriging was applied to 
produce continuous map of different 
attributes over the study area. A mesh of 
15m×15m was used for discretization. 
Kriging results are shown in table 3.  
Kriging results and maps for stem density 
have not been shown here and the reason is 
declared in the next section. 
Comparison of tables 1 and 3 reveals that 
the means of BA and H are almost identical. 
However, the ranges between minimum and 

maximum of kriged data compare to 
measured data have been reduced. In fact, 
about 70% variance reduction has been 
occurred which is due to smoothing effect of 
kriging method.     
Figure 3 shows the spatial distribution 
(kriging map) for basal area and height over 
the study area. 
Figure 4 shows standard deviation (kriging 
error) map of estimation for basal area and 
height over the study area. 

 
Table 3. Summary statistics of kriging results for basal area and height  

Attribute Mean Min Max SD CV% 
BA (m2/ha) 12.21 5.58 20.32 2.96 24.25 
H (m) 13.87 11.13 18.43 1.33 9.60 

 
 

 
 
 
 
 
 
 
 
 
 
 

   a b

Fig 3. Kriging maps for a) basal area and b) height
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Validation 
Table 4 shows validation results. Cross 
validation graphs are in figure 5. 
According to table 4, the amount of 
estimation error (RMSE) and bias (ME) is so 

high for the stem density. It means that, also 
based on figures 2b and 5b, this attribute 
does not behave like a regionalized variable. 
Therefore, it is ignored for calculating 
kriging map.   

 
Table 4. Validation results for tree attributes 
Attribute ME RMSE 
BA (m2/ha) 0.05 3.92 
N (n/ha) -14.8 362 
H (m) 0.02 2.67 

                                                         ME: Mean Error 
                      RMSE: Root Mean Square Error 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig 5. Cross  validation graphs for the three attributes 
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Full census inventory 
Using full callipering inventory, we tallied 
13036 trees with d.b.h. over 7.5 cm in 14.25 
ha. Thus, mean stem density would be 
914.80 trees per hectare in this area. We 
calculated mean basal area equal to 15.82 
m2/ha and considered it as real mean. As 
mentioned before, this area consisted of 32 
sample plots. To have an idea of spatial 
variability of basal area and compare it to 
other approaches, we also applied 
geostatistical approach in this area. Figure 6 
shows the spatial structure of basal area in  
 

the full census area. 
As it is clear from the figure 6, basal area 
shows strong spatial structure with low 
nugget effect in the full census area which 
fitted by spherical model. Cross validation 
graph is shown in figure 7. 
Therefore, three approaches were used here: 

1- Full callipering inventory (100%)  
2- Sampling (Classical approach) 
3- Kriging (Geostatistical approach) 
 

and results have been compared in table 5: 

 

               
Fig 6.  Isotropic experimental variogram and the fitted spherical model for basal area in the full 

census area with number of pairs per each lag distance 
 

 
Fig 7. Cross  validation graph for stem basal area in the full census area 

 
Table 5. Summary statistics of 3 approaches for estimation of basal area  

Confidence limits (95%) Method Mean  
(m2/ha) 

SD 
(m2/ha) 

CV 
% Low Up 

Full callipering 15.82 2.01 12.70 - - 
Sampling 14.67 6.13 41.78 12.50 16.84 
Kriging 14.80 3.10 20.94 13.71 15.90 
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DISCUSSION  
Three forest tree attributes; basal area, 
density and height, were investigated in this 
research in spatial structure point of view in 
an 18 years maple plantation. Both basal 
area and height showed spatial auto-
correlation and were well behaved as a 
regionalized variable without any clue of 
variogram anisotropy. However, variogarm 
of tree density had a large nugget effect and 
was not spatially 
 auto- correlated despite measurement 
errors. This is because the trees were 
planted in regular spacing (3m×3m) and are 
in the initial stages, as well (typical rotation 
period is 80 years). Therefore, the essential 
competition has not started yet to produce 
any spatial structure for stem density 
attribute. At the same time, basal area 
showed 246m range of spatial auto-
correlation while for height it was 527m 
(table 2). The longer the auto-correlation 
range, the more homogenous the variable. 
Therefore, height is more homogenous than 
basal area here. It means that again, light 
competition has not started yet, indicating 
that trees in general have similar heights. 
Furthermore, it is well known that any 
stress or differences in soil, growing 
conditions and site variables affect firstly, on 
diameter increment and then on height.  
Since basal area and height showed spatial 
continuity, we applied kriging interpolation 
to produce continuous maps of their spatial 
distributions. According to these maps, the 
highest values of basal area are seen in the 
north-western part of the studied area 
(figure 3) which partially overlaps the full 
census area. Since there was no silvicultural 
activity in the area when this research 
started,  the higher values in this part return 
to soil fertility and rate of trees mortality.  
The means of basal area and height 
attributes, obtained from classical and 
geostatistical approaches were almost 
identical with no significant differences 
(tables 1 and 3). However, the variance 
reductions in geostatistical approach 
obtained from kriging were around 70%. It 
means that kriging estimates basal area and 
height more accurately than classical 
approach in terms of the coefficient of 

variation. This is because of the smoothing 
effect of kriging which decreases the range 
between minimum and maximum kriged 
data compare to measured data. Due to this 
feature, kriging cannot be used on 
unregionalized stand attributes; otherwise 
cross validation shows a big bias (figure 5b).  
As with all statistical methods, each 
estimation has its own error where in 
geostatistics can be quantified precisely by 
kriging error map (figure 4). Using this kind 
of error map we can cover the high error 
area with sufficient extra sample plots to 
reduce the estimation error. 
Validation results indicated that kriging 
estimates basal area and height, accurately. 
However, because of the large nugget effect 
and weak spatial structure in the experimental 
variogram of stem density, this estimation was 
biased (table 4 and figure 5b). 
We compared the results of basal area 
estimation using three approaches in the full 
census area. As it is clear from table 5, both 
classical and geostatistical approaches 
underestimated the real mean while, the 
differences were not significant, statistically. 
However, again in terms of the coefficient of 
variation, kriging estimated more accurately 
than classical approach. 
Nevertheless, this study revealed that 
geostatistics has  the potential to capture 
and explain the spatial variability of basal 
area and height attributes in the plantation. 
This result is in contradiction to the results 
of Gunnarson et al. (1998) who showed that 
hardwood volume (in 314m2 plot size) is an 
example of a variable that has no or little 
useful spatial auto-correlation in Sweden, 
and Tuominen et al. (2003) who found that 
geostatistical interpolation on the stand level 
estimation did not result in any further 
improvement in the accuracy of estimates in 
the boreal forests of Finland and Akhavan et 
al. (2010) who indicated that kriging has no 
potential for estimation of natural forest 
stock in the Caspian region of Iran, as well. 
On the other hand, it confirms the results of 
Biondi et al. (1994) who used basal area as a 
continuous variable within U.S. old- growth 
forests as well as Montes et al. (2005) who 
used ordinary kriging for estimation of cork 
oak production in Spain. Also Kint et al. 
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(2003) in a research at the Campine region of 
Belgium indicated that, height attribute is 
spatially auto-correlated for all tree species 
in planted Pinus sylvestris stands. 
 
CONCLUSIONS   
Spatial interpolation of forest tree attributes 
using geostatistical approach provides us 
with valuable outputs on a regional scale. 
Kriging geo-referenced maps can be very 
useful for forest owners and managers as a 
suitable tool to have an insight of forest 
stock distribution. This kind of information 
is applicable as a guide map in forest 
management plans; for instance, to identify 
harvesting area based on growing stock 
density, road network planning based on 
stock distribution, inter-planting in 
plantation forest, and silvicultural 
interventions such as thinning and light 
thinning based on forest density. 
Furthermore, as we observed in this study, 
kriging would improve the estimation 
accuracy compared to classical approach. 
Therefore, it is better to use kriging 
interpolation to calculate forest growing stock 
accurately, for forest management planning. 
Finally, kriging geo-referenced map in 
regional scale allows us to make rapid 
spatial analyses, which in connection with 
GIS methods enables the user to test the 
influence of different factors on forest stock 
attributes. Today, using this kind of spatial 
information in forest sampling inventory 
and management is not conventional in 
Iran. Therefore, we propose to apply 
geostatistical approach in this kind of 
plantation forest. 
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آمار در یک جنگلکاری در  روش زمین های درختان به تغییرات مکانی و برآورد مشخصه
  ری ایرانناحیه خز

 
  کیادلیری. اخوان و ح. ر

 
  چکیده

های درختان در یک جنگلکاری در ناحیه خـزری ایـران             منظور بررسی تغییرات مکانی و برآورد مشخصه        این تحقیق به     
   متـر در یـک تـوده پلـت          50×125ای بـه ابعـاد         تـصادفی بـا شـبکه      -روش منظم   برداری به   بدین منظور نمونه  . انجام شد 

)Acer velutinum Boiss. (18 در .  آری انجـام شـد  2ای شـکل    هکتار و با قطعات نمونه دایره63 ساله به مساحت
منظـور مقایـسه       هکتـار بـه    25/14ای به مساحت      برداری و همچنین محدوده      قطعه نمونه در این عرصه نمونه      96مجموع  

کل درختان بـا    زمینی، تراکم و ارتفاع       های رویه   سپس واریوگرام تجربی برای مشخصه    . روشها، آماربرداری صددرصد شد   
زمینـی و ارتفـاع کـل درختـان،           هـای رویـه     مشخصه. مرجع، محاسبه و ترسیم شد      های قطعات نمونه زمین     استفاده ار داده  

کـه مشخـصه تـراکم        ساختار مکانی خوبی از خود نشان داده که با استفاده از مدل کروی بـرازش داده شـدند، در حـالی                    
زمینـی و ارتفـاع       های رویه   بنابراین فقط برای مشخصه   . ام تجربی برخوردار بود   ای زیادی در واریوگر     درختان، از اثر قطعه   

 بلوکی انجام شد که نتایج ارزیابی صحت آن نشان داد که هر دو برآورد نااریـب                 -روش کریجینگ معمولی    کل، برآورد به  
روش کریجینـگ،     زمینـی بـه    همچنین در منطقه آماربرداری صددرصد، میانگین برآورد مشخصه رویه        . و قابل قبول هستند   

آمار قادر به نمایش و توصیف تغییـرات مکـانی            بنابراین روش زمین  . داری را با میانگین واقعی آن نشان نداد         تفاوت معنی 
باشد، اما برای مشخصه  زمینی و ارتفاع کل درختان و نیزبرآورد نااریب آنها در چنین جنگلکاریهایی می  های رویه   مشخصه

  .داقل تا سنین کم، قابل استفاده نیستتراکم جنگلکاری ح


