Caspian J. Env. Sci. 2008, Vol. 6 No. 1 pp. 1~9 ©Copyright by The University of Guilan, Printed in I.R. Iran

[Research]

Seed dormancy and seedling vigour as influenced by planting time environment and date of harvest in rice (*Oryza sativa* L.)

M. Arumugam^{1*}, M. P. Rajanna² and R. Gowda³

1- Dept. of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India.

2- Rice Breeder Zonal Agricultural Research Station, V.C. farm, Mandya-571 405, India.

3- Dept. of Seed Science and Technology, UAS, GKVK, Bangalore- 560 065. India.

*Corresponding author's E-mail: arumugam@mcbl.iisc.ernet.in

ABSTRACT

Seed dormancy is a genetically inherited trait whose intensity is modified by the environment during seed development and maturation. In order to study the effect of harvest time on the seed quality and optimum time of sowing to obtain good quality seeds, freshly threshed seeds of ten diverse rice genotypes harvested from six environments were evaluated for seed dormancy and seedling vigour index as a measure of seed quality. There were significant differences in germination in different genotypes in all the six environments as well as days after harvest. The germination percentage was initially low and gradually increased with increasing in days after harvest (0. 15, 30 and 45th day after harvest). Out of these six genotypes viz., IET 8116, KMP 101, IR 30864, KRH-1, IR-64 and MTU 1001 were found dormant, immediately after harvest. The studies indicated that sowing in the first (June 2nd fortnight) and second environment (July 1st fortnight) were resulted in production of non-dormant seeds. Whereas all the six environments were favorable to take up seed production of new promising rice genotype KMP 101.

Keywords: Environment, Seed Dormancy, Seedling vigour, Sowing Date, Rice.

INTRODUCTION

Rice (Oryza sativa L.) has been the major calorific and dietary protein source for many and outweighs any other crop due to its domestication for several thousand years. Although rice is grown across hundred countries, it is the major staple food crop for the people of the Asia pacific region, which accounts for 59 percent of world population. More than 90 percent of global rice is produced and consumed in this region. In India, the annual per capita consumption is 86 kg and constitutes about 30 percent of the total calorific sources (CRRI, 1996). Rice is India's provincial food crop contributing 40 percent of total food grain production and is grown in on 44.5 m.ha with the production of 85.5 m.t (Hindu, 2002). In Karnataka, rice is grown an area of 1.42 m.ha with an annual production of 3.6 m.t (UAS, 2000).

In India, rice is grown in two main seasons i.e wet season (kharif) and dry season (rabi). It has been observed that there are differences among genotypes for stability of different characters over seasons and locations and even different date of sowing with in the same season due to the influence of environment. It may cause the difference in relative ranking of varieties when they are compared over serious environments. Although stratification of environments has been used effectively to reduce the genotypeenvironment interaction, it may not be pragmatic since fluctuation across the environments will be of considerable magnitude (Allard & Bradshaw, 1964).

In Karnataka, India, under Cauvery command area, rice is cultivated in an area of nearly 0.1 million hectares during wet season and summer seasons. In wet season sowing starts in May-June and extends up to September- October. Though different varieties have been identified and recommended for sowing in different months, farmers are facing difficulties in adopting the same due to shift in rainfall pattern and scheduling of water in the canal.

As a result, many farmers are sowing long duration and medium duration varieties in June and July instead. The delay in sowing is known to reduce grain yield, seed quality because of poor seed setting and biotic stress due to high temp and high humidity at flowering. As a result of delay in sowing the harvest time also varies; therefore, it is imperative to know the effect of time of harvest on seed dormancy and seedling vigour.

The ability of seeds to delay their germination until the favorable time reaches in the right place is an important survival mechanism. Seed dormancy is an important physiological stage in the life cycle of many seed bearing plants. In an ever-changing environment, dormancy increases survival of species by distributing its germination over time and also by avoiding pre-harvest sprouting , which affects seed quality adversely in many cereals. In general seed dormancy is a qualitative and genetically inherited trait (Naylor, 1983) whose intensity is modified by the environment during seed development. Seed dormancy is very much influenced by season / environment (Sukumara Dev, 1982; Padmaja Rao, 1994) and crop duration. However , safe removal of seed dormancy is necessary; when ever fresh seed is required for planting immediately after harvest. Several studies (Agarwal, 1981: Biradar & Mahadevappa, 1993: Padma & Muralimohan reddy 2000) also reveal the effect of time of harvesting on seed dormancy and seedling vigour index in rice and many other crops. Considering this, an experiment was designed to study the influence of dates of planting on the occurrence and dissemination of seed dormancy and seedling vigour.

MATERIAL AND METHODS

The investigation was carried out during wet season 2002 using ten promising rice genotypes received from All India Coordinated Research Project on Rice, Zonal Agricultural Research Station, V.C. Farm, Mandya (12°32'N and 76°53'E with an annual rainfall of 765 mm). Ten genotypes constituting wide spectrum of variation in agro botanical traits (Table 1) were sown and transplanted in six different dates viz., E1 (June 2nd fortnight), E₂ (July 1st fortnight), E₃ (July 2nd fortnight), E₄ (August 1st fortnight), E₅ (August 2nd fortnight) and E₆ (September 1st fortnight) by giving 15 days interval between each sowing. In order to study the effect of time of harvest on the seed dormancy, the freshly harvested seeds of each genotype from each environment was cleaned, dried to safe level of moisture (< 13%) and graded. The seeds were evaluated for their germination potential as well as seedling vigour.

Standard Germination Test

The germination test was conducted in laboratory using between paper methods (ISTA, 1996). One hundred seeds in each of two replications were placed on germination paper towels, which were then rolled. The rolled towels were incubated in a germination chamber maintained at $25 \pm 1^{\circ}$ C and 90 per cent relative humidity. The seedlings were evaluated on the 14th day, and the percent of germination was expressed based on normal seedlings to reveal the occurrence of dormancy due to sowing dates. Samples were stored in cloth bags at normal room condition to study the natural dissipation of seed dormancy. Seed samples were drawn at an interval of 15 days and tested for germination until the seed reached maximum germination percent.

Seedling Vigour Index (SVI)

Ten seedlings from each replication were selected at random on the 14th day after germination, and seedling length was measured. The same seedlings were dried at $80\pm 1^{\circ}$ C for 24 hrs and weighed. The mean seedling length and dry weight were used for estimation of SVI in two different methods using the following formula (Abdul Baki and Anderson, 1973).

1. SVI Based on seedling length

SVI = Mean seedling length (cm) x Germination (%)

2. SVI Based on seedling dry weight

SVI = Mean seedling dry weight (mg) x Germination (%)

RESULTS AND DISCUSSION

The result of germination and seedling vigour studies conducted in twelve genotypes under six different sowing dates were presented in tables 2, 3 and 4. The results revealed that there were significant differrences in germination in different genotypes in all six environments as well as days after harvest. The genotype Jaya, IET 8116, BPT 5204 and CTH 3 exhibited higher germination per cent of 71, 65, 60 and 68 respectively immediately after harvest (0th day) in the second environment (July 1st fortnight) and attained minimum certification standard (80%) at 15th day after harvest in most of the environment, indicating the dormancy period for these genotypes was hardly 15 days. The genotype BR 2655 recorded its minimum certification standard immediately after harvest in all the environments.

The genotypes IR 30864, CTH 1, IR 64 and MTU 1001 showed lower germination per cent immediately after harvest. IR 3086 attained minimum certification standard (80%) at 45th day after harvest in most of the environments except first (June 2nd fortnight) and third (July 2nd fortnight) environments, which suggested that the seeds of IR 30864, CTH 1 and IR 64 produced in these environments recorded a dormancy period of forty five days. However, these genotypes registered a maximum germination (> 96%) in fifth environment at the 45th day after harvest. Similar findings were reported by Rame Gowda et al., (2003) on some of the parental lines and hybrid rice KRH 2. Among the ten genotypes, MTU 1001 recorded the lowest germination percent immediately after harvest in almost all environments. However, maximum germination (>80%) was attained at 45th day after harvest in the second, fifth and sixth environments, it did not attain minimum certification standard even after 45 days after harvest in rest of the environments (Table 2). Angrish and Panwar (1995) have reported similar kind of results in the medium duration varieties of rice.

SVI based on mean seedling length

Among the twelve genotypes studied only eight genotypes *viz.*, Jaya, IET 8116, BR 2655,

BPT 5204, KMP 101, KRH 2, CTH 3 and Rasi had maximum seedling vigour in almost all environments (Table 3). However, the genotypes Java and BR 2655 had maximum vigour of 2896 and 2867 in the first environment, the first environment could produce good quality seeds. Similarly IET 8116 and CTH 3 attained maximum vigour in second environment (July 1st Fortnight). The higher vigour index indicated the suitable environments for the production of quality seeds. The genotype BPT 5204 performed well in third environment for higher vigour seeds. The popular hybrid KRH 2 had the maximum vigour (923) in the fourth environment. The drought tolerant short duration variety Rasi attained its maximum vigour (1222) in sixth environment.

The genotypes IR 30864, CTH 1, IR 64 and MTU 1001 showed lower seedling vigour in almost all the tested environments. However, in IR 30864 the fourth and sixth environments were favored for the production of higher vigour seeds. CTH 1 and IR 64 had maximum vigour of 1029 and 1537 respectively, in the second environment (July 1st Fortnight). The genotype MTU 1001 attained higher vigour of 107 in sixth environment (September 1st Fortnight) comparatively. Singh and Borikar (1985) also reported the influence of physiological maturity on seedling vigour of rice. Similar results were reported in soybean (Abdul Baki and Anderson, 1973).

SVI based on mean seedling dry weight

The results of SVI revealed that among the twelve genotypes only seven viz., Java, BR 2655, BPT 5204, KMP 101, KRH 2, CTH 3 and Rasi had maximum vigour in all the six environments; however, the genotypes IET 8116 and BR 2655 had the maximum vigour immediately after harvest in first environment (June 2nd fortnight). The maximum vigour of 410 (0th days after harvest) was recorded for Jaya in sixth environment (September 1st fortnight). The maximum seedling vigour of 240, 253, 371, 371 and 397 (0th days after harvest) was recorded for BPT 5204, KMP 101, KRH 2, CTH 3 and Rasi in second, third, fifth and sixth environments respectively.

Table 1.	Salient feature	Table 1. Salient features of the rice genotypes used in the study.				
Sl. No	Genotypes	Parents	Duration (days)	Grain type	Yield potential (t/ha)	Special character
1	Jaya	TN-1×TN-141	140-145	LB	7.5-8.0	Wide adaptability
7	IET 8116	Vikram × Andrewsali	140-145	LB	7.5-8.0	BPH and WBPH tolerant
б	BR 2655	Selection from BR 2655-9-3-1	140-145	MB	8.0-8.5	Tolerant to blast and non lodging
4	BPT 5204	(GEB 24 × TN 1) Mahsuri	145-150	MS	7.0-7.5	Good cooking quality
Ŋ	KMP 101	Mandya Vijaya × CTH 3	130-135	MS	7.0-7.5	Good cooking quality, tolerant to sheath rot.
9	IR 30864	(IR 17-38 × IR 7601-1-2-1) (IR 46 × Khoala)	130-135	LS	7.0-7.5	Tolerant to saline and alkaline condition
7	KRH 2(Hybrid)	IR 58025A × KMR-3R	130-135	LS	85-10.0	High yield and tolerant blast
×	CTH 1 (Mukthi)	Sirinda Meraha × IR 2153-159-1-4	125-130	MB	5.0-5.5	Cold tolerant, Red Kernel
6	CTH 3 (Bili Mukthi)	Reselection from CTH 1	120-125	MB	5.0-5.5	Cold tolerant, white Kernel
10	IR 64	IR 5657-3-2-1 × IR 2061-465-5-5	130-135	LS	7.0-7.5	Suitable for puffed rice industry
11	Rasi	TN1 × Co 29	120-125	MS	5.0-5.5	Drought tolerant
12	MTU 1001	Vajram × MTU 7014	130-135	LB	7.0-7.5	BPH tolerant
Note: Lł	Note: LB = Long bold	MB = Medium bold LS = Long slender MS =	MS = Medium slender.			

4

Seed dormancy and seedling vigour

Arumugam et al.

		Е	E1			н	E2			E3	~			E4				ES				E6		
Genotype		ays afte	Days after harvest	st		Days after	er harvest	st	Dč	Days after harvest	: harves	t	Da	ys afteı	Days after harvest	,t	Da	Days after harvest	harves	L.	Da	Days after harvest	harves	st
	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45
ЈАҮА	44	51	92	98	71	95	98	98	35	53	76	85	39	54	81	88	42	68	88	92	64	81	92	96
IET 8166	56	88	89	92	65	94	67	66	6	×	68	75	60	99	16	96	14	52	84	88	54	70	80	90
BR 2655	84	88	92	67	74	93	94	100	83	88	06	94	79	16	95	66	80	06	95	97	70	80	06	66
BPT 5204	44	85	86	94	60	87	93	67	32	51	85	87	50	75	85	87	40	69	87	94	41	69	78	88
KMP 101	23	80	89	92	29	97	97	66	46	80	92	97	60	79	97	98	49	78	94	95	58	84	88	96
IR 30864	IJ	34	53	57	г	39	82	98	г	17	30	60	35	55	78	85	14	50	89	06	22	48	72	86
KRH 2	40	89	06	98	51	97	98	98	51	82	06	98	59	78	94	95	57	83	92	98	40	51	64	87
CTH 1	4	26	51	62	61	06	06	67	12	22	60	80	14	38	99	80	24	40	82	94	б	9	44	78
CTH 3	58	73	95	66	68	92	92	95	57	06	95	67	56	62	98	66	52	80	92	66	36	67	64	86
IR 64	4	17	67	80	1	67	84	94	18	47	70	88	40	77	83	95	38	62	96	66	30	39	60	80
RASI	28	68	87	92	79	87	88	96	29	72	97	66	34	74	98	98	40	79	89	92	61	77	90	66
MTU 1001	1	20	41	56	Ч	59	59	86	0	1	49	63	5	×	55	77	9	20	71	16	26	44	99	92
Mean	55	60	04	цх Ц	7	69	08	70	50	ŭ	Ĺ	L	:	Ļ	10	5	Q,	,	00	2		ç	i	00

5

Genotype Days after harvest JMM 99 191 192 194 192 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194<			.=	E1			ц	E2			E3	~			E4				E5			E6			
0 15 30 45 0 15 30 45 0 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 105 150 155 150 155 150 155 150 155 150 150 155 150<	Genotype		Jays aft	er harve	est		'ays aft∈	er harve	st	Da	ys after	: harves	t	Da	ys after	harves	t	Day	/s after.	harvest		Days after harvest	ter har	vest	
97 105 179 286 191 1870 2030 731 109 1855 1955 1955 1955 1955 1956 2036 2135 <th></th> <th>0</th> <th>15</th> <th>30</th> <th>45</th>		0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45
6 90 1812 2334 606 1034 1236 1340 1336 1331 1335<	ЈАҮА	679	1075	1792	2896	1191	1870	2006	2020	724	1006	1504	1976	773			1955	209				1232	1906	2267	2444
i i	IET 8166	606	1812	2254	2696	1034	1229	1340	1932	104	132	1821	1840	1044		1916	2067	187				1234	1615	1927	2053
4 100 179 206 100 190 157	BR 2655	1946		2217	2687	1545	2077	2129	2323	1892	1431	2011	2087	1573		1848						1637	1879	2166	2398
11 387 1590 1888 2108 173 173 175 </td <td>BPT 5204</td> <td>1002</td> <td></td> <td></td> <td>2061</td> <td>1095</td> <td>1902</td> <td>1984</td> <td>2206</td> <td>688</td> <td>1338</td> <td>1776</td> <td>1786</td> <td>626</td> <td></td> <td></td> <td>1971</td> <td>645</td> <td></td> <td></td> <td>1891</td> <td>616</td> <td>1508</td> <td>1772</td> <td>2179</td>	BPT 5204	1002			2061	1095	1902	1984	2206	688	1338	1776	1786	626			1971	645			1891	616	1508	1772	2179
4 74 571 108 129 170 685 1546 172 101 320 587 387 587 506 507 500 2016 2036 2016	KMP 101	387	1599	1898	2008	500	1786	1827	2054	779	1759	1868	2167	1062		2038	2188					1007	1628	1946	2287
488 2090 2167 2428 983 1210 2264 534 534 532 1914 1916 742 1018 1036 2161 46 104 550 1570 1029 1246 1841 1998 169 415 1134 2038 2133 2144 762 2105 235 2353 2305 2353 1570 1326 1341 1677 386 465 2105 2305 762 1556 1537 1563 1570 1245 905 1757 2128 2339 1349 1677 366 455 2105 2303 761 1569 1570 1575 1575 305 1575 2433 305 235 2473 2702 762 353 1569 175 176 305 1535 1345 172 2041 172 2043 2703 2704 2755 2355 2355 2356 <t< td=""><td>IR 30864</td><td>74</td><td>571</td><td>1078</td><td>1291</td><td>170</td><td>685</td><td>1546</td><td>1727</td><td>101</td><td>320</td><td>545</td><td>1466</td><td>625</td><td></td><td></td><td>1887</td><td>236</td><td></td><td></td><td>2017</td><td>517</td><td>1083</td><td>1757</td><td>2143</td></t<>	IR 30864	74	571	1078	1291	170	685	1546	1727	101	320	545	1466	625			1887	236			2017	517	1083	1757	2143
1 46 104 550 1570 1026 1246 1841 1998 169 415 1134 2036 2134 1677 386 465 2105 235 3 762 1595 2525 1537 1563 1870 2425 905 1757 2128 239 933 2144 846 1792 2473 2702 35 359 1595 1595 1537 1563 1575 2128 239 933 2144 846 1792 2473 2703 486 1406 1605 2312 1517 1575 1745 365 1433 1834 2529 535 1741 703 2703 2701 486 1406 1605 2312 1517 1557 1745 362 2353 2443 263 2704 1001 2 321 791 775 1347 262 2453 2645 265	KRH 2	488	2090	2167	2428	983	1210	2269	2514	590	1919	2264	2344	923			1916				2161	870	1147	1459	2132
3 762 1595 2632 1537 1563 1570 2425 905 1757 2128 2539 2133 2144 846 1792 2473 2702 55 359 1584 2186 11 1101 1718 247 305 987 1528 2149 1712 2081 572 1301 2353 2701 486 1406 1605 2312 1517 1557 1756 503 1433 1834 2529 535 1357 2043 2353 2701 1001 2 321 1517 1557 1756 1735 1433 1834 2529 535 1377 2045 2353 2701 1001 2 321 791 775 1433 1834 2529 536 1357 2045 2356 2355 1001 2 321 792 1535 1495 165 1645 164 1603 <td>CTH 1</td> <td>46</td> <td>104</td> <td>550</td> <td>1570</td> <td>1029</td> <td>1246</td> <td>1841</td> <td>1998</td> <td>169</td> <td>415</td> <td>1134</td> <td>2038</td> <td>221</td> <td>681</td> <td></td> <td>1677</td> <td>386</td> <td></td> <td>2105</td> <td>235</td> <td>88</td> <td>137</td> <td>983</td> <td>1626</td>	CTH 1	46	104	550	1570	1029	1246	1841	1998	169	415	1134	2038	221	681		1677	386		2105	235	88	137	983	1626
55 359 1584 2186 11 1718 2247 305 987 1528 214 622 1419 1712 2081 572 1301 2553 2701 486 1406 1605 2312 1577 1576 1756 1743 1834 2529 535 1357 2045 711 1623 2326 2335 1001 2 321 792 1411 7 855 1175 1745 0 932 1495 08 1045 1575 2046 711 1623 2265 2355 1001 2 3211 775 1745 0 932 1495 08 162 1750 2675 2567 1010 2 162 1433 1834 2592 1495 08 162 1750 2667 2567 2356 2356 2357 1010 2 1231 1682 1433 1745 <t< td=""><td>CTH 3</td><td>762</td><td>1595</td><td>2225</td><td>2632</td><td>1537</td><td>1563</td><td>1870</td><td>2425</td><td>905</td><td>1757</td><td>2128</td><td>2539</td><td>933</td><td>1389</td><td>2133</td><td>2144</td><td></td><td></td><td></td><td>2702</td><td>854</td><td>1520</td><td>1571</td><td>2153</td></t<>	CTH 3	762	1595	2225	2632	1537	1563	1870	2425	905	1757	2128	2539	933	1389	2133	2144				2702	854	1520	1571	2153
486 1406 1605 2312 1517 1557 1756 503 1433 1834 2529 535 1357 2045 203 711 1623 2226 2355 1001 2 321 792 1411 7 855 1175 1745 0 932 1495 08 104 1003 1623 056 1750 2267 1 595 1231 1682 2182 855 1475 0 932 1612 2040 775 1196 1581 627 1033 2042 2042 2040 775 1196 1781 1033 2042 1042 1612 2040 775 1196 1781 677 1033 <	IR 64	55	359	1584	2186	11	1101	1718	2247	305	987	1528	2214	622		1712	2081				2701	693	956	1479	2045
2 321 792 1411 7 855 1175 1745 0 9 932 1495 08 104 1003 1623 063 366 1750 2267 595 1231 1682 2182 885 1423 1788 2080 563 1042 1612 2040 775 1196 1786 1033 2042 2281	RASI	486	1406	1605	2312	1517	1557	1756	1766	503	1433	1834	2529	535	1357	2045	2203					1222	1719	1941	2211
595 1231 1682 2182 885 1423 1788 2080 563 1042 1612 2040 775 1196 1786 1981 627 1033 2042 2281	MTU 1001	7	321	792	1411	~	855	1175	1745	0	6	932	1495	08			1623	063			2267	107	878	1864	2437
	MEAN	595	1231	1682	2182	885	1423	1788	2080	563	1042	1612	2040	775			1981				2281	865	1331	1761	2176

6

Arumugam et al.

Total and the functional parametric conditional and the function conditional and the functional and the functiona			Γ	E1			ц	E2			E3	ŝ			E4				E5				E6		
0 15 30 45 0 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 30 45 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 15 10 <th>Genotype</th> <th></th> <th>Jays afte</th> <th>er harve</th> <th>est</th> <th></th> <th></th> <th>er harve</th> <th>st</th> <th>Da</th> <th>ıys afteı</th> <th>r harves</th> <th>st</th> <th>Da</th> <th>ys after</th> <th>harvesi</th> <th>1</th> <th>Day</th> <th>'s after l</th> <th>harvest</th> <th></th> <th>Day</th> <th>'s after</th> <th>harves</th> <th></th>	Genotype		Jays afte	er harve	est			er harve	st	Da	ıys afteı	r harves	st	Da	ys after	harvesi	1	Day	's after l	harvest		Day	's after	harves	
212 306 532 537 518 533 513 533 <th></th> <th>0</th> <th>15</th> <th>30</th> <th>45</th>		0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45	0	15	30	45
6 364 57 60 77 28 40 70 305 307 305 307 305 307 <	JAYA	242	306	552	637	355	570	637	735	193	318	494	553	215	324	477							608	069	720
5 53 58 58 54 51 </td <td>IET 8166</td> <td>364</td> <td>572</td> <td>069</td> <td>757</td> <td>293</td> <td>423</td> <td>423</td> <td>423</td> <td>40</td> <td>50</td> <td>306</td> <td>375</td> <td>300</td> <td>336</td> <td>501</td> <td>672</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>455</td> <td>560</td> <td>675</td>	IET 8166	364	572	069	757	293	423	423	423	40	50	306	375	300	336	501	672						455	560	675
4 18 33 430 517 240 434 535 532 537 533 660 145 180 435 533 430 533 660 145 180 435 535 545 545 545 545 545 545 545 545 545 545 545 543	BR 2655	572	588	598	728	444	512	517	700	544	540	572	517	435	501	570							440	540	545
11 145 360 490 145 436 437 545 550 551 570 355 247 420 564 618 232 373 440 4 42 150 371 24 176 410 588 39 79 450 755 560 450 755 560 755 575 757 757 757 757 750 757 753 750 753 750 750 753 750 753 750 750 757 750 757 750	BPT 5204	198	383	430	517	240	494	558	582	192	281	510	566	225	375	553							345	429	528
4 12 13 24 17 41 17 32 45 </td <td>KMP 101</td> <td>145</td> <td>360</td> <td>490</td> <td>069</td> <td>145</td> <td>436</td> <td>437</td> <td>545</td> <td>255</td> <td>506</td> <td>520</td> <td>554</td> <td>270</td> <td>395</td> <td>582</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>378</td> <td>440</td> <td>624</td>	KMP 101	145	360	490	069	145	436	437	545	255	506	520	554	270	395	582							378	440	624
280 686 675 686 332 631 533 637 755 756 757 753 <td>IR 30864</td> <td>42</td> <td>150</td> <td>212</td> <td>371</td> <td>24</td> <td>176</td> <td>410</td> <td>588</td> <td>39</td> <td>79</td> <td>225</td> <td>450</td> <td>175</td> <td>330</td> <td>468</td> <td>553</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>264</td> <td>432</td> <td>645</td>	IR 30864	42	150	212	371	24	176	410	588	39	79	225	450	175	330	468	553						264	432	645
20 28 117 372 275 495 534 540 42 139 330 520 91 20 165 220 533 658 14 30 230 290 402 808 842 306 460 570 371 534 570 585 570 585 633 534 598 593 594 598 402 384 324 402 580 591 504 585 591 594 598 490 584 450 384 324 402 581 504 505 504 <td< td=""><td>KRH 2</td><td>280</td><td>668</td><td>675</td><td>686</td><td>332</td><td>631</td><td>539</td><td>539</td><td>332</td><td>697</td><td>735</td><td>765</td><td>354</td><td>429</td><td>705</td><td></td><td></td><td></td><td></td><td></td><td>220</td><td>281</td><td>480</td><td>738</td></td<>	KRH 2	280	668	675	686	332	631	539	539	332	697	735	765	354	429	705						220	281	480	738
290 402 842 306 460 506 570 571 585 575 588 693 234 390 594 598 402 384 32 71 402 480 1 364 504 504 508 130 431 384 32 71 402 480 1 364 505 504 505 504 505 504 505 504 505 504 505 504 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 505 <t< td=""><td>CTH 1</td><td>20</td><td>28</td><td>117</td><td>372</td><td>275</td><td>495</td><td>534</td><td>540</td><td>42</td><td>139</td><td>330</td><td>520</td><td>16</td><td>209</td><td>363</td><td>520</td><td></td><td></td><td></td><td>658</td><td>14</td><td>30</td><td>220</td><td>507</td></t<>	CTH 1	20	28	117	372	275	495	534	540	42	139	330	520	16	209	363	520				658	14	30	220	507
32 71 402 480 1 369 504 106 259 410 484 180 402 581 760 215 403 816 743 180 254 450 126 340 653 736 479 528 624 131 468 534 545 153 481 735 784 514 668 397 499 585 1001 2 100 226 443 2 353 545 545 545 545 549 585 480 585 499 585 1001 2 100 226 443 24 473 0 1 26 349 584 584 103 331 488 605 231 446 547 523 359 542 542 543 543 549 549 549 549 549 549 540 549 540	CTH 3	290	402	808	842	306	460	506	570	371	534	570	585	252	475	588							402	384	559
126 340 653 736 479 528 624 131 468 534 545 153 481 735 784 240 514 668 690 397 499 585 1001 2 100 226 443 2 354 473 0 1 270 410 29 585 480 30 110 568 743 56 106 584 103 331 488 605 231 446 574 187 323 456 527 223 359 542 672 206 341 624 681 225 339 483	IR-64	32	71	402	480		369	504	564	106	259	410	484	180	402	581							254	450	560
01 2 100 226 443 2 354 473 0 1 270 410 29 50 385 480 30 110 568 743 56 106 584 193 331 488 605 231 448 496 574 187 323 456 527 223 359 542 672 206 341 624 681 225 339 483	RASI	126	340	653	736	356	479	528	624	131	468	534	545	153	481	735							499	585	674
193 331 488 605 231 448 496 574 187 323 456 527 223 359 542 672 206 341 624 681 225 339 483	MTU 1001	7	100	226	443	7	325	354	473	0	-1	270	410	29	50	385	480				743	56	106	584	612
	MEAN	193	331	488	605	231	448	496	574	187	323	456	527	223	359	542							339	483	616

7

Though IET 8116 producing higher vigour seed in almost all environments, it exhibited lower seedling vigour of 50 and 79 at 0th days after harvest in third and fifth environments due to persistency of dormancy. Similar studies on other crop species were reported in maize (Hussaini et al., 1988); in carrot and beetroot (Karuna and Aswathaiah, 1989). The genotypes IR 30864, CTH 1, IR 64 and MTU 1001 had shown lower vigour of 42, 20, 71 and 100 (0th days after harvest) in first environment, and the same trend follows in almost all environments. Those genotypes which yielded higher vigour seeds in particular environment considered as suitable environment for cultivation of that particular genotype.

CONCLUSION

It is concluded from this study that seed dormancy and seedling vigour index of rice genotypes at different intervals after harvest varied significantly from environment to environment and among the genotypes of each environment, which is revealed the presence of genotypic variations for these characteristics. The germination percentage was initially low and gradually increased with increasing in days after harvest (0. 15, 30 and 45th day after harvest). Out of these six genotypes viz., IET 8116, KMP 101, IR 30864, KRH-1, IR-64 and MTU 1001 were found dormant, immediately after harvest. The studies indicated that sowing in the first (June 2nd fortnight) and second environment (July 1st fortnight) were resulted in production of non-dormant seeds. Whereas all the six environments were favorable to take up seed production of new promising rice genotype KMP 101. Seedling vigour index was estimated by means of seedling length and seedling dry weight methods to identify favorable environment for production of good quality seeds, indicated that sowing in the first environment (June 2nd Fortnight) is more favorable for the production of Jaya, IET 8116, BR 2655, Rasi and CTH 3. Similarly June 2nd fortnight was found favorable for IR 30864. Whereas, all the six environments were favorable to take-up seed production of new promising genotype KMP 101.

ACKNOWLEDGEMENTS

The authors thank the Indian Council of Agricultural Research, Govt. of India, for

awarding fellowship to carry out this work to the first author. Sincere thanks to Muthusamy Murugan, National Institute of Advanced Studies, IISc Campus, Bangalore, India, for his valuable suggestions in the preparation of the manuscript.

REFERENCES

- Abdul Baki, A.A and Anderson, J.D. (1973) Vigour determination in soybean seeds by multiple criteria. *Crop Sci.* **13**, 630-633.
- Agarwal, P.K. (1981) Genotyic variation in seed dormancy of paddy and simple methods to break it. *Seed Res.* **9(1)**, 20-27.
- Allard, R.W. and Bradshaw, A.D. (1964) Implication of genotype- environment interaction in applied plant breeding. *Crop Sci.* **4**, 503-507.
- Angrish, R. and Panwar, D.V.S. (1995) Seed dormancy and viability in some rice genotypes. *Seed Res.* **23(2)**, 118-120.
- Arumugam, M. (2002) Stability of rice genotypes over extended dates of sowing during wet season under cauvery command area in Karnataka. M.Sc (Agri.) thesis submitted to University of Agricultural Sciences, Bangalore, India.
- Biradar, B.B. and Mahadevappa, M. (1993) Dormancy and germination studies in CTH 1 a cold tolerant rice. *Seed special.* **10**, 494-497.
- CRRI, (1996) Central Rice Research Institute, Souvenir of 1996. CRRI, Cuttack, India. pp. 18-25.
- Hindu, (2002) *The Hindu Survey of Indian Agriculture*. pp.5-7.
- Hussaini, S.H. Ahmed, J. and Dhanraj, A. (1988) Effect of accelerated ageing in germination Vigour and yield of maize. *Seed Res.* **16(1)**, 68-74.
- ISTA, (1996) International rules for seed testing. *Seed and Technol.* **24**, 335-342.
- Karuna, M.N and Aswathaiah, B. (1989) Effect of seed Vigour on field performance in beetroot and carrot. *Seeds and Farm*. **15**, 40-47.
- Naylor, J.M. (1983) Studies on the genetic control of some physiological processes in seeds. *Canadian Journal of Botany*. **61**, 3561-3567.
- UAS, (2000) Package of Practices for higher yields, *University of Agricultural Sciences*, *Bangalore*, *India*, pp. 17-43.
- Padma, V. and Murali mohan reddy, B. (2000) Evaluation of rice genotypes for

dormancy duration and seed storability under natural and accelerated ageing. *Seed Res.* **28(2)**, 158-165.

- Padmaja R. (1994) Studies on seed dormancy in traditional rice varieties as affected by seasons. *Indian J. Plant Physiol.* **37(2)**, 113 -115.
- Rame, G., Swarnna, C., Devaraju, P.J. and Vidya Chandra, B. (2003) Dissipation of seed Dormancy and its breaking methods I

KRH-2 hybrid rice and its parental lines. *Seed research*. **31(1)**, 102-104.

- Singh, A.R. and Borikar, S.T. (1985) seed quality and storability as influenced by time of harvesting in sorghum. *J. Mahastra Agri. Univ.* **10(2)**, 167-169.
- Sukumara Dev, V.P. (1982) Post harvest dormancy of important high yielding paddy varieties cultivated in Kerala. *Seed Res.* **11(2)**, 167-171.