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ABSTRACT 
In recent years, artificial neural networks (ANNs) have become one of the most promising tools in order to 
model complex hydrological processes such as the rainfall-runoff process. In many studies, ANNs have 
demonstrated superior results compared to alternative methods. ANNs are able to map underlying 
relationship between input and output data without prior understanding of the process under 
investigation. However, they have been known as black-box models due to their problem in providing 
insight into the relationship learned. In this study, firstly we develop a rainfall-runoff model using an 
ANN approach, and secondly we describe different approaches including Neural Interpretation Diagram, 
Garson’s algorithm, and randomization approach to understand the relationship learned by the ANN 
model. The results indicate that ANNs are promising tools not only in accurate modelling of complex 
processes but also in providing insight from the learned relationship, which would assist the modeller in 
understanding of the process under investigation as well as in evaluation of the model.  
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INTRODUCTION 

In recent years, artificial neural networks 
(ANNs), a system theoretic/black-box 
method, have been used for modelling 
complex hydrological processes, such as 
rainfall-runoff (e.g. Hsu et al., 1995; Lorrai & 
Sechi, 1995; Minns & Hall, 1996; Dawson & 
Wilby, 1998; Tokar & Johnson, 1999; Rajurkar 
et al., 2002; Wilby et al., 2003; Giustolisi & 
Laucelli, 2005; Jain & Srinivasulu, 2006) and 
shown to be one of the most promising tools 
in hydrology (ASCE Task Committee, 2000a, 
b; Maier & Dandy, 2000; Dawson & Wilby, 
2001). ANN models are built upon the input 
and output observations without the detailed 
understanding of the complex physical laws 
governing the process under investigation 
and are able to provide reasonably accurate 
model for the process under investigation, as 
a great number of the applications in 
hydrology along with the comparison of 
their predictive performance with other 

methods in many studies have demonstrated. 
However, they have been mostly criticized 
for their black-box nature due to the fact that 
the primary application of an ANN is the 
nonlinear modelling of input output 
observations in order to obtain accurate 
modelling of system’s response without 
gaining any understanding of the 
mechanisms learned by the network. In other 
words, the trained network is not able to 
provide any explanation regarding how the 
model was built; hence, there is no way to 
evaluate the model obtained. According to 
the ASCE Task Committee (2000b), for ANNs 
to expand their acceptability it is very impo- 
rtant that they provide some explanation 
after training has been completed. In order to 
fulfill this, by using an ANN model 
developed to describe the rainfall-runoff 
relationship in a watershed in northern Iran, 
we use three approaches including the 
Neural Interpretation Diagram, Garson’s 
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algorithm, and randomization approach to 
obtain some explanation on trained ANN 
about the modelled relationships of the 
process under investigation. This paper starts 
with a brief description of the study area and 
data and then gives the details of the method 
used for modelling the rainfall-runoff process 
and methods for interpretation of the ANN 
model before discussing the results and 
drawing the conclusions.  

 
STUDY AREA AND DATA  

In this study, the monthly precipitation 
totals, average runoff and temperature 
database derived from a watershed located in 
northern Iran were used in order to develop 
an ANN rainfall-runoff model. The stations 
of 13001 (54  4 E, 36  38 N), 13004 (53  40 E, 36  
37 N), 13005 (53  54 E, 36  35 N), 13007 (54  44 
E, 36  36 N), 13009 (53  36 E, 36  35 N) and 
13013 (53  19 E, 36  38 N) are located in the 
watershed so that the station 13013 with 
drainage area 1962 km2 is located in the 
downstream end of the watershed under 
study. Five rainfall variables measured at 
13001, 13004, 13005, 13007, and 13009 along 
with average runoff and temperature 
variables, measured at 13005 were used as 
input variables in order to model runoff at 
downstream station 13013. The time series 
span the period from 1982-83 to 1996-97. Out 
of this available data, the first three  
years were reserved as validation period. 
Moreover, in order to reflect the seasonality 
in the watershed, time variables represented 
by a sine, and a cosine curve was also used as 
the inputs to develop the model. All time 
series were standardized prior to use by 
subtracting the mean and dividing by the 
standard deviation. 

 
METHODS 
Feed-forward multilayer perceptron 
(MLP) 

The feed-forward multilayer perceptron 
(MLP) is the most commonly used ANN in 
hydrological applications. The structure of a 
three-layer MLP is shown in Fig. 1. It consists 
of three layers; an input layer, a hidden layer, 
and an output layer. The number of neurons 
in the input and output layers are defined 
based on the number of input and output 
variables of the system under investigation 
respectively. However, the number of 

neurons in the hidden layer(s), in this study a 
single hidden layer with six neurons, is 
usually defined via a trial-and-error 
procedure. As seen from the figure, the 
neurons of each layer are connected to the 
neurons of the next layer by weights. In 
order to obtain optimal values of these 
connection weights, ANNs must be trained. 
In this study, we used a back-propagation 
algorithm for training the network, in which 
the inputs are presented to the network and 
the outputs obtained from the network are 
compared with the real output values (target 
values) of the system under investigation in 
order to compute error and then the 
computed error is back-propagated through 
the network and the connection weights are 
updated. This procedure, called training 
procedure, continues until an acceptable 
level of convergence is reached. In this study, 
in order to avoid instability, the neural 
network was trained 20 times, and by 
averaging the output from all a final output 
was obtained. Details about ANN structures, 
training algorithms and applications in 
hydrology are thoroughly covered by ASCE 
Task Committee (2000a, b), Maier & Dandy 
(2000) and Dawson & Wilby (2001). 
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Fig 1. A structure of a three-layer feed-forward 
multilayer perceptron (MLP). 

 
The results of the ANN model applied in 

this study were evaluated by means of: 
1. Root mean square error (RMSE)  
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where )(ˆ iQ is the n estimated runoff value, 

)(iQ  is the n observed runoff value, Q is 
the mean of the observed runoff values, and 

Q~ is the mean of the estimated runoff values. 
 
Neural interpretation methods 
Neural interpretation diagram (NID) 

The neural interpretation diagram (NID) 
was introduced by Özesmi and Özesmi 
(1999) in order to interprete the connection 
weights of a trained ANN model based on 
the visualisation of their magnitude and 
direc- 
tion, which are represented by line thickness 
and shading respectively. In this study, the 
NID was used for investigation of the 
rainfall-runoff relationship in which the 
magnitude and direction of the relationship 
are represented based on the line thickness 
and  state (dotted or solid). As the thickness 
is scaled to the value of the weight of the 
connection (magnitude), the solid connection 
weights are used to represent the connections 
that are positive (excitor), and the dotted 
connection weights are used to represent the 
connections that are negative (inhibitor). 
Consequently, the visual inspection of the 
magnitude and direction of the connection 
weights of a trained ANN model will help 
hydrologists to identify the individual and 
interacting effects of the input variables on 
the output variables of the modelled system.  

According to Fig. 1, there are two types of 
connection weights, one representing weig- 
hts for the input-hidden layer connection and 
the other representing the hidden-output 
layer connection weights; hence, the rainfall-
runoff relationship or the relationship betwe- 
en input and output variables is determined 
by the input-hidden and hidden-output layer 
connection weights as follows.The positive 
effects of input variables are achieved by the 
same signs of the input-hidden and hidden-
output connection weights (both positive or 
both negative) and the negative (inhibitory) 
effects of input variables are achieved by  
the opposite signs of the input-hidden and 
hidden-output connection weights (i.e. 
positive input-hidden and negative hidden-
output connection weights or negative input-
hidden and positive hidden-output layer 
connection weights). Interactions among 
input variables can be identified as input 

variables with the connection weights 
entering the same hidden neuron with 
opposing signs. 

 
Garson’s algorithm 

Garson (1991) introduced a method for 
using the connection weights obtained from 
ANNs to determine the relative contribution 
of each input variable in modelling the 
output of the system. Referring to Fig. 2, an 
example of calculation procedures needed for 
the Garson’s algorithm with three input 
neurons (1, 2, and 3); two hidden neurons (A 
and B) and one output neuron (O) can be 
summarized as follows: 

 
Table 1. Input-hidden-output neuron connection 
weights. 

 Hidden A Hidden B 

Input 1 WA1 = 0.087 WB1 = -0.526 
Input 2 WA2 = 0.119 WB2 = -0.284 
Input 3 WA3 = 0.039 WB3 = 0.793 

Output WOA = -0.738 WOB = -0.987 

 
Table 2. Contribution of each input neuron to the 
output via each hidden neuron (e.g., CA1=WA1×WOA). 

 Hidden A Hidden B 

Input 1 CA1 = -0.064 CB1 = 0.519 

Input 2 CA2 = -0.088 CB2 = 0.280 

Input 3 CA3 = -0.029 CB3 = -0.783 

 
Table 3. Relative contribution of each input neuron 

(e.g., rA1= 321

1

AAA

A

CCC
C

++ ) and sum of input 
neuron contributions (e.g., S1= rA1 + rB1). 

 Hidden A Hidden B Sum 

Input 1 rA1 = 0.355 rB1 = 0.328 1S = 0.683 

Input 2 rA2 = 0.486 rB2 = 0.177 2S = 0.663 

Input 3 rA3 = 0.159 rB3 = 0.495 3S = 0.654 

 
Table 4. Relative importance of each input variable 
(e.g. 

( ) ( ) %16.34100
654.0663.0683.0

683.0100
321

1
1 =×

++
=×

++
=

SSS
S

RI
 

 

 Relative importance (%) 

Input 1 34.16 

Input 2 33.14 

Input 3 32.69 
 

It should be mentioned that the Garson’s 
algorithm uses the absolute values of the 
connection weights (i.e., without considering 
the direction of the relationship) which 
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would lead to the misinterpretation of the 
importance of the input variables in 
modelling the output of the system. 
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Fig 2. An ANN structure for the illustration of Garson’s 
algorithm. 
 
Randomization approach 

Olden and Jakson (2002) proposed the 
randomization approach, which uses an 
additional measure to investigate the impo- 
rtance of input variables, i.e. the overall 
connection weight as defined below in 2b. 
According to Olden and Jakson (2002) this 
approach consists of the following proc- 
edures: 
1. Construct a number of ANN models using 
the original input output data with randomly 
generated initial weights. 
2. Select the ANN model with the best 
performance and calculation and record: 
a. Input-hidden-output connection weights: 
the product of input-hidden and hidden-
output connection weights, for instance 1AC : 
see Garson’s algorithm, step 2. 
b. Overall connection weight: the sum of the 
products of the input-hidden and hidden-
output connection weight for each input 
variable, for instance 1 1 1A BC C C= + . 
3. Randomly permute the original output 
data. 
4. Construct an ANN using randomized 
outputs. 
5. Repeat steps 2, 3 and 4 a large number of 
times. 

In this study, we used the overall 
connection weights in order to assess the 
importance of the input variables on the 
output in a way that if the overall connection 
weight of an input variable is greater than 
95% of the randomized overall connection 
weights for the same input variable then the 

input variable can be considered to be 
significant with a 95% confidence level. This 
approach was also tested by Kingston et al., 
(2003) and found that it can correctly identify 
the significant input variables on the output. 
It might be mentioned that if input variables 
are found to be insignificant, they will 
subsequently be removed from the ANN 
structure. This procedure can be repeated 
(iterative process) until only significant input 
variables remain.  
 
RESULTS 
Runoff estimation 

In this study, a three-layer feed-forward 
MLP model was developed in order to 
estimate the monthly runoff in a watershed 
in northern Iran. As mentioned in the study 
area and data section, we have developed the 
feed-forward MLP model using 9 input 
variables, and 1 output variable, which are 
defined based on the problem at hand. 
However, we have chosen six neurons in the 
hidden layer based on a trial-and-error 
procedure. 

 Figs. 3 and 4 show the scatter diagrams of 
the observed versus simulated monthly 
runoff obtained from the feed-forward MLP 
model for training and validation period 
respectively. It is seen that runoff can be 
reasonably well simulated by using the 
developed feed-forward MLP model. 
However, we are not sure about how this 
model works. In order to get some 
explanation from the model, three 
approaches were used and their results will 
be explained in next subsection. 
 

 
Fig 3. Observed versus simulated runoff for training 
period. 
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Fig 4. Observed versus simulated runoff for the 
validation period. 
 
Sensitivity 

Fig. 5 represents the NID for the employed 
ANN rainfall-runoff model in order to depict 
the influence of each input variable on the 
output. As can be noticed from Fig. 5, this 
approach qualitatively depicts the contri- 
bution of each input variable via hidden 
neurons on the output variable. For instance, 
the temperature variable has positive effects 
to all neurons in the hidden layer except the 
second neuron. The outgoing signal from the 
fifth and sixth hiddenneurons have the most 
positive and negative effects on the output 
variable respectively. Moreover, it is possible 
to depict the interactions among the input 

variables (described before). For example, the 
effect of temperature and runoff on the sixth 
neuron in the hidden layer. As mentioned 
earlier, this approach qualitatively depicts 
the connection weights of the ANN rainfall-
runoff model. 

However, in order to obtaine quantita- 
tively the contribution of each input variable 
on the output, we used Garson’s algorithm. 
Fig. 6 shows the results. As can be noticed, 
the input variable contributions ranged from 
4.12% to 19.73 %. The highest contribution 
belongs to the temperature variable mea- 
sured on station 13005, and the lowest 
contribution belongs to the rainfall variable 
measured at station 13009. It does not seem 
to be appropriate to compare the NID and 
Garson’s algorithm because the NID visually 
represents the connection weights flowing 
from input variables via hidden neurons to 
the output neuron while the latter provides 
the relative importance of each input variable 
on the output without considering the 
direction of the connection weights.  

But, it is also interesting to get information 
about significant input variable (s) on the 
output. To do so, the randomization 
approach (by following the procedures 
mentioned before) was used, and the runoff 
input variable was found to be the only 
significant input on the output. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5. Neural Interpretation Diagram (NID) for artificial neural network (ANN) rainfall-runoff modelling. The line 
thickness represents the magnitude of the connection weights and the format of the lines as dotted (negative effect), 
and solid (positive effect) represents the direction of the connection weights. 
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Fig 6. Relative importance of each input variable (%) to 
simulate runoff based on Garson’s algorithm. 
 
CONCLUSIONS 

We presented an ANN model to estimate 
monthly runoff in a watershed in northern 
Iran. The ANN model found out to be 
reasonably accurate. However, in order to 
provide some explanations for those who 
criticize ANNs as a black-box model, we 
considered three approaches, including neu- 
ral interpretation diagram (NID), Garson’s 
algorithm, and randomization approach in 
order to understanding the mechanisms of 
being modelled and the results showed  
the utility. Consequently, ANNs would get 
greater acceptability among hydrologists by 
combining their interpretation and predictive 
abilities. 
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