Aldibekova, A, Sultanova, B, Aksoy, A & Kurmanbayeva, M 2021, Comparative study of root, stem, and leaf anatomy of young Sogdian ash trees (Fraxinus sogdiana Bunge) growing in river valleys of the Sharyn State National Park. International Journal of Biological Chemistry, 14: 80-89, DOI: 10.26577/ijbch.2021.v14. i1.08.
Assmann, JJ, Kerby, JT, Cunliffe, AM & Myers Smith, IH 2019, Vegetation monitoring using multispectral sensors — best practices and lessons learned from high latitudes. Journal of Unmanned Vehicle Systems, 7: 54-75, DOI: 10.1139/JUVS-2018-0018.
Belgica, THR, Suba, MD & Alejandro, GJD 2024, Botanical assessment and conservation status of medicinal plants in mountain range of Malinao Albay, Philippines. Biodiversitas, 25. DOI: 10.13057/biodiv/d250409.
Cendrero Mateo, MP, Moran, MS, Papuga, SA, et al. 2016, Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments. Journal of Experimental Botany, 67: 275-286, DOI: 10.1093/jxb/erv456.
Chappelle, EW, Kim, MS & McMurtrey, JE 1992, Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sensing of Environment, 39: 239-247, DOI: 10.1016/0034-4257(92)90089-3.
Chehreh, B, Moutinho, A & Viegas, C 2023, Latest trends on tree classification and segmentation using UAV data: A review of agroforestry applications. Remote Sensing, 15:2263. DOI: 10.3390/rs15092263.
Croft, J, Cross, N, Hinchcliffe, S, et al. 1999, Plant names for the 21st century: The international plant names index, a distributed data source of general accessibility. Taxon, 48: 317-324. DOI: 10.2307/1224436.
Dar, SA, Nabi, M, Dar, SA & Ahmad, WS 2022, Influence of anthropogenic activities on the diversity of forest ecosystems. In: Towards sustainable natural resources: Monitoring and managing ecosystem biodiversity. Cham: Springer International Publishing, pp. 33-49, DOI: 10.1007/978-3-031-06443-2_3.
Gitelson, AA, Kaufman, YJ & Merzlyak, MN 1996, Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58: 289-298, DOI: 10.1016/S0034-4257(96)00072-7.
Goloskokov, VP, ed. 1972, An illustrated guide to plants of kazakhstan. 2nd ed. [Publisher not provided].
Haboudane, D, Miller, JR, Pattey, E, et al. 2004, Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90: 337-352, DOI: 10.1016/J.RSE.2003.12.013.
Imanbayeva, A, Duisenova, N, Orazov, A, et al. 2024, Study of the floristic, morphological, and genetic (atpF–atpH, ITS, matK, psbK–psbI, rbcL, trnH–psbA) differences in Crataegus ambigua populations in Mangistau (Kazakhstan). Plants, 13: 1591. DOI: 10.3390/plants13121591.
Imanbayeva, A, Mukhtubayeva, S, Adamzhanova, Z, Duisenova, N, Zharassova, D, Lukmanov, A & Aidyn, O 2024, Phylogenetic analysis of the relict species Dryopteris filix-mas (L.) Schott. by the chloroplast gene (rbcL) and features of modern ontogenesis on the Mangistau Peninsula, Kazakhstan. Caspian Journal of Environmental Sciences, 22: 849-860. DOI: 10.22124/cjes.2024.8137.
Kaizhakparova, AB 2020, Legislation and development of legislation in the sphere of specially protected natural areas of the Republic of Kazakhstan. Bulletin of the Institute of Legislative power of the Republic of Kazakhstan, 3: 61. DOI: 10.26577/ijbch.2020.v3.i1.02.
Khasanov, FO 2015, Identifier of plants of Central Asia. Tashkent: Fan.
Kleinsmann, J, Verbesselt, J & Kooistra, L 2023, Monitoring individual tree phenology in a multi-species forest using high-resolution UAV images. Remote Sensing, 15: 3599. DOI: 10.3390/rs15143599.
Koblanova, S, Mukhtubayeva, S & Kakimzhanova, A et al. 2024, Diversity of birch and alder forests in the Kostanay region of Kazakhstan. Forests, 15: 1680. DOI: 10.3390/f15101680.
Komarov, AS, Palenova, MM, Smirnova, OV 2003, The concept of discrete description of plant ontogenesis and cellular automata models of plant populations. 170: 427-439 https://doi.org/10.1016/S0304-3800(03)00243-6
Kratky, M & Komarkova, J 2023, Evaluating the use of very high-resolution RGB imagery from UAV for vegetation classification. Proceedings of IDT Conference, Zilina, pp. 51-56. DOI: 10.1109/IDT59031. 2023.10194395.
Kubentayev, SA, Alibekov, DT & Perezhogin, YV, et al. 2024, Revised checklist of endemic vascular plants of Kazakhstan. PhytoKeys, 238: 241. DOI: 10.3897/phytokeys.238.114475.
Kurbanov, R & Zakharova, N 2021, Justification and selection of vegetation indices to determine the early soybeans readiness for harvesting. E3S Web of Conferences 273. DOI: 10.1051/E3SCONF/202127301008.
Myrzagaliyeva, A, Irsaliyev, S, Tustubayeva, S, Samarkhanov, T, Orazov, A & Alemseitova, Z 2024, Natural resources of Rhaponticum carthamoides in the Tarbagatai State National Nature Park. Diversity, 16: 676. DOI: 10.3390/d16110676.
Nigmatova, S, Zhamangara, A, Bayshashov, B et al. 2021, Canyons of the charyn river (Southeast Kazakhstan): Geological history and geotourism. Geojournal of Tourism and Geosites, 34: 102-111, DOI: 10.30892/gtg.34114-625.
Orazov, A, Myrzagaliyeva, A, Mukhitdinov, N et al. 2022, Callus induction with 6-BAP and IBA to preserve Prunus ledebouriana (Rosaceae), an endemic plant of Altai and Tarbagatai, East Kazakhstan. Biodiversitas, 23, DOI: 10.13057/biodiv/d230645.
Orazov, A, Tustubayeva, S, Alemseytova, J, et al. 2021, Flora accompanying Prunus ledebouriana (Schltdl.) YY Yao in the Tarbagatai State National Park in Kazakhstan. International Journal of Biological Chemistry, 14: 21-34, DOI: 10.26577/ijbch.2021.v14.i1.02
Orazov, A, Yermagambetova, M & Myrzagaliyeva, A et al. 2024, Plant height variation and genetic diversity between Prunus ledebouriana (Schlecht.) YY Yao and Prunus tenella Batsch based on using SSR markers in East Kazakhstan. PeerJ, 12: e16735. DOI: 10.7717/peerj.16735.
Pavlov, NB 1961, Flora Kazahstana [Flora of Kazakhstan]. Vol. 4. Academy of Sciences of the Kazakh SSR.
POWO 2024. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Available at: http://www.plantsoftheworldonline.org.
Rondeaux, G, Steven, M & Baret, F 1996, Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55: 95–107, DOI: 10.1016/0034-4257(95)00186-7.
Rouse, JW, Haas, RH, Schell, JA & Deering, DW 1973, Monitoring vegetation systems in the great plains with ERTS. Remote Sensingcenter, 351, 309–317.
Saravia, D, Salazar, W & Valqui Valqui, L et al. 2022, Yield predictions of four hybrids of maize (Zea mays) using multispectral images obtained from UAV in the coast of Peru. Agronomy, 12. DOI: 10.3390/agronomy12112630/S1.
Schober, P & Schwarte, LA 2018, Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126: 1763-1768, DOI: 10.1213/ANE.0000000000002864.
Serebrjakov, IG 1962, Ekologicheskaia morfologiia rastenii (Ecological Morphology of Plants). Moscow: Vysshaia shkola.
Sharapkhanova, ZM, Lyy, YF & Yegemberdiyeva, KB 2024, Assessment and mapping of the mudflow phenomena intensity in Charyn State National Natural Park. Geojournal of Tourism and Geosites, 55: 1148-1155. DOI: 10.30892/gtg.55315-1287.
Shevchenko, NE & Smirnova, OV 2017, Refugia for the floristic diversity of Northern Ural dark conifer forests as markers of natural vegetation of the eastern European Taiga. Russian Journal of Ecology, 48: 212-218. DOI: 10.1134/S1067413617030183.
Shynybekov, MK, Abayeva, KT, Rakymbekov, ZK et al. 2023, Study of natural regeneration of Sogdian ash (Fraxinus sogdiana Bunge) and silvicultural measures to promote it in the Sharyn river floodplain of Almaty region. DOI: 10.21203/rs.3.rs-1509826/v1.
Tang, L & Shao, G 2015, Drone remote sensing for forestry research and practices. Journal of Forestry Research, 26: 791–797. DOI: 10.1007/s11676-015-0088-y.
Torresan, C, Berton, A, Carotenuto, F et al. 2017, Forestry applications of UAVs in Europe: A review. International Journal of Remote Sensing, 38: 2427–2447. DOI: 10.1080/01431161.2016.1252477.
Vincini, M, Frazzi, E & D’Alessio, P 2008, A broad-band leaf chlorophyll vegetation index at the canopy scale. Precision Agriculture, 9: 303–319. DOI: 10.1007/s11119-008-9075-z.
Xiao, H, Chen, XW, Yang, ZY et al. 2014, Vegetation index estimation by chlorophyll content of grassland based on spectral analysis. Spectroscopy and Spectral Analysis, 34: 3075–3078. DOI: 10.3964/j.issn.1000-0593(2014)11-3075-04.
Zargar, M, Dyussibayeva, E, Orazov, A et al. 2023, Microsatellite-based genetic diversity analysis and population structure of Proso Millet (Panicum miliaceum L.) in Kazakhstan. Agronomy, 13: 2514. DOI: 10.3390/agronomy13102514.
Zeinullina, A, Zargar, M, Dyussibayeva, E et al. 2023, Agro-morphological traits and molecular diversity of Proso Millet (Panicum miliaceum L.) affected by various colchicine treatments. Agronomy, 13: 2973. DOI: 10.3390/agronomy13122973.
Zhang, Y, Zhang, D, Li, W et al. 2020, Characteristics and utilization of plant diversity and resources in Central Asia. Regional Sustainability, 1: 1-10. DOI: 10.1016/j.regsus.2020.08.001.