Araujo, JPM & Hughes, DP 2016, Diversity of entomopathogenic fungi: Which groups conquered the insect body. Advances in Genetics, 94: 1-39.
Bitsadze, N, Jaronski S, Khasdan, V, Abashidze, E, Abashidze, M, Latchininsky, A, Samadashvili, D, Sokhadze, I, Rippa, M, Ishaaya, I & Horowitz, AR 2013, Joint action of Beauveria bassiana and the insect growth regulators diflubenzuron and novaluron, on the migratory locust, Locusta migratoria. Journal of Pest Science, 86: 293-300.
Bradford, M 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
Chapman, RF 2012, The Insects: Structure and function. 5th ed., SJ, Simpson & AE, Douglas (Eds), Cambridge University Press, New York, USA, 929 p.
Da Silva, RA, Quintela, ED, Mascarin, G M, Barrigossi, JAF & Lião, LM 2013, Compatibility of conventional agrochemicals used in rice crops with the entomopathogenic fungus Metarhizium anisopliae. Science of Agriculture, 70: 152-160.
Dias, BA, Neves, PMOJ, Furlaneto-Maia, L & Furlaneto, MC 2008, Cuticle-degrading proteases produced by the entomopathogenic fungus Beuveria bassiana in the presence of coffee berry borer cuticle. Microbiology, 39: 301-306.
Gupta, P, Paul, MS & Sharma, SN 1999, Studies on compatibility of white muscardine fungus Beauveria bassinia with neem products. Indian Phytopathology, 52: 278-280.
Hajji, M, Kanoun, S, Nasri, M & Gharsallah N 2007, Purification and Characterization of an Alkaline Serine-protease Produced by a New Isolated Aspergillus clavatus ES1. Process Biochemistry, 42: 791-797.
Hiromori, H & Nishigaki, J 2001, Factor analysis of synergistic effect between the entomopathogenic fungus Metarhizium anisopliae and synthetic insecticides. Applied Entomology Zoology, 36: 231-236.
Hirose, E, Neves, PMOJ, Zequi, JAC, Martins, LH, Peralta, CH & Moino, JA 2001, Effect of biofertilizers and Neem oil on the entomopathogenic fungi Beauveria bassiana (Bals.) Vuill. and Metarhizium anisopliae (Metsch.) Sorok. Brazilian Archives of Biological Technology, 44: 419-423.
Humber, RA 2012, Entomophthoromycota: a new phylum and reclassification for entomophthoroid fungi. Mycotaxon, 120: 477-492.
Kikankie, CK, Brooke, BD, Knols, BGJ, Koekemoer, LL, Farenhorst, M, Hunt, RH, Thomas, MB & Coetzee, M 2010, The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures. Malaria Journal, 9: 71-80.
Li, DP & Holdom, DG 1994, Effects of pesticides on growth and sporulation of Metarhizium anisopliae (Deuteromycotina: Hyphomycets). Journal of Invertebrate Pathology, 63: 209-211.
Maina, UM, Galadima, IB, Gambo, FM & Zakaria, D 2018, A review on the use of entomopathogenic fungi in the management of insect pests of field crops. Journal of Entomological and Zoological Studies, 6: 27-32.
Marcuzzo, LL & Eli, K 2016, Effect of temperature and photoperiod on the in vitro germination of conidia of Botrytis squamosa, the causal agent of Botrytis leaf blight of onion. Summa Phytopathology, 42: 261-263.
Marzieh, R, Ahmad, B, Aziz, S, Hamid-Reza, P & Mehran, G 2010, Compatibility of Metarhizium anisopliae (Ascomycota: Hypocreales) with several insecticides. Journal of Plant Protection Research, 50: 22-27.
Mietkiewski, R & Gorski, R 1995, Growth of selected entomopathogenic fungi species and isolates on media containing insecticides. Acta Mycologica, 30: 27-33.
Miller, GL 1959, Use of dinitrosalicylic acid reagent for deter- mination of reducing sugars. Analytical Chemistry, 31: 426-428.
Neves, PMOJ, Hirose, E, Techujo, PT & Moino, JA 2001, Compatibility of entomopathogenic fungi with neonicotinoid insecticides. Neotropical Entomology, 3: 263-268.
Oliveira, RCD & Neves, PM 2004, Compatibility of Beauveria bassiana with acaricides. Neotropical Entomology, 33: 353-358.
Pelizza, SA, Schalamuk, S, Simón, MR, Stenglein, SA, Pacheco-Marino, SG & Scorsetti, AC 2018, Compatibility of chemical insecticides and entomopathogenic fungi for control of soybean defoliating pest, Rachiplusia nu. Revista Argentina Microbiology, 50: 189-201.
Sain, SK, Monga, D, Kumar, R, Nagrale, DT, Hiremani, NS & Kranthi, S 2019, Compatibility of entomopathogenic fungi with insecticides and their efficacy for IPM of Bemisia tabaci in cotton. Journal of Pesticide Science, 44: 97-105.
Shaabani, M, Habibpour, B & Mossadegh, MS 2015, Compatibility of the entomopathogenic fungus Metarhizium anisopliae senso latowith imidacloprid for control of Microcerotermes diversus Silvestri (Iso.: Termitidae) in laboratory conditions. Plant Pests Research, 5: 27-36 (In Persian).
Shahriari, M, Zibaee, A, Khodaparast, SA & Fazeli-Dinan, M 2020, Screening and Virulence of the Entomopathogenic Fungi Associated with Chilo suppressalis Walker. Journal of Fungi, 7: 34.
Shapiro-Ilan, D, Hazir, S & Glazer, I 2017, Basic and applied research: Entomopathogenic nematodes. In: LA Lacey (Ed.), Microbial control of insect and mite pests from theory to practice. Oxford: Academic Press. London, UK, 380 p.
Wraight, SP, Inglis, GD & Goettel, MS 2007, Fungi. In: LA, Lacey & HK, Kaya, (Eds), Field manual of techniques in invertebrate pathology, 2nd edn. Springer, Dordrecht, Amsterdam, Netherland, 469 p.
Wu, JH, Yu, X, Wang, XS, Tang, LD & Ali, S 2019. Matrine enhances the pathogenicity of Beauveria brongniartii against Spodoptera litura (Lepidoptera: Noctuidae). Frontiers in Microbiology, 1: 387-1812.
Zibaee, A 2019, Entomopathogen and synthetic chemical insecticide: Synergist and antagonist. In: MA, Khan & W, Ahmad (Eds), Microbes for sustainable insect pest management, sustainability in plant and crop protection. Springer Nature, Lozan, Switzerland, 489 p.