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ABSTRACT 

Forest fires have become a significant environmental concern in the Hyrcanian Forest, causing extensive loss of 

vegetation and posing a threat to biodiversity. Accurate prediction of high-risk fire locations is crucial for effective 

forest management. In this study, we developed and evaluated a clustering-based model using a multilayer 

perceptron artificial neural network with an error backpropagation training procedure to model fire risk potential 

in Saravan Forest, Guilan Province, North Iran. To optimize generalization, the model utilized two unsupervised 

clustering-specific procedures, namely Fuzzy C-Means and k-Medoids. The primary focus of our study was on the 

model's ability to predict potential fire risk locations, which is essential for forest fire prevention and control. The 

input criteria included recorded fire incidents, distances to farmland, roads, rivers, air pressure, solar radiation, 

slope, aspect, wind speed, and percentage of canopy cover density. The results showed that the procedure of the 

two algorithms used in this study in allocating potential fire hazard points is highly similar, differing mainly in the 

methodology employed for data center allocation. According to the results, the RMSE, R2, and MSE for the model 

used in this study are respectively equal to 0.2861, 99.38, and 0.01919, which indicates the reliability of the model. 

Moreover, according to the Confusion matrix analysis table's results, FCM was slightly better than K-medoids in 

terms of its predictive accuracy. This model demonstrated high accuracy in predicting fire hazards, showing 

promising potential for forest fire prediction using clustering-based models. Additionally, our model exhibited 

superior performance compared to other clustering techniques for identifying potential fire hazard sites. Our 

developed clustering-based model provides valuable insights for forest managers to identify locations at fire risk, 

enabling more efficient resource allocation and preventative measures. This approach can significantly improve 

forest fire management and reduce ecological damage caused by wildfires. 
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INTRODUCTION 

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications 

including neural networks and expert systems. Since then, the field has rapidly progressed congruently with the 

wide adoption of machine learning (ML) methods in the environmental sciences (Jain et al. 2020). Forest fires are 

a major environmental concern, with devastating effects on the forest ecosystem. Climate change is one of the 

main drivers of forest fires in the 21st century, with rising temperatures, declining rainfall, and prolonged drought 

seasons exacerbating their incidence (Argañaraz et al. 2015; Littell et al. 2016). In addition to natural factors such 

as topography, biology, and climate, human activities like forest roads, settlements, agriculture, and recreation also 

contribute to the occurrence of forest fires (Eskandari 2015). Iran's forest areas, for instance, experience an annual 

destruction of over 5,000 ha due to forest fires (Adab Kanniah et al. 2013). The Saravan forests, as a part of the 

Hyrcanian forests inscribed as a UNESCO World Heritage Site located in Rasht, Guilan Province, North Iran 
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represent a significant challenge in this regard. Despite recurring annual forest fires in the area and other parts of 

Iran, statistical reports indicate that insufficient control measures have been taken (Eskandari & Chuvieco 2015). 

Irrespective of the number of fires, the Global Forest Watch website registered the loss of 31 ha of forest in Rasht 

between 2001 and 2017, most of which were related to forest fires (Zarekar et al. 2013; Global Forest Watch 

2018). The protection of Saravan forests is thus crucial, as it represents a global challenge. To mitigate the risks 

associated with forest fires, the development of effective fire management guidelines is fundamental. Machine 

learning-based simulations can aid in understanding the behavior and impact of forest fires. This study aims to 

investigate the ability of clustering algorithms, including FCM and K-medoids, to predict forest fire occurrence. 

Few studies have explored the application of these two algorithms in modeling forest fires, hence the focus of this 

study (Khatami et al. 2015; Jafarzadeh et al. 2017; Khatami et al. 2017; Giwa & Benkrid 2018). Based on previous 

studies, the factors considered in the model include three primary criteria, including environmental, climatic, and 

human factors, with ten sub-criteria. The model's parameters are selected according to established literature 

(Eskandari et al. 2013; Eskandari & Chuvieco 2015; Zhong et al. 2017; Tien Bui et al. 2018). The study 

hypothesizes that there is no significant difference between FCM and K-medoids algorithms' performance in 

predicting forest fires. The results of this study will pave the way for further research on clustering algorithms' 

application to improve forest fire prediction studies and better preparation for potential fires based on empirical 

evidence. In conclusion, effective strategies and advanced technologies are necessary to mitigate the threats posed 

by forest fires. Forest fires' devastating impact on ecosystems necessitates the development of robust fire 

management guidelines and machine learning-based simulations to comprehend their complex dynamics and 

design better approaches to manage them. By investigating the effectiveness of clustering algorithms in forest fire 

modeling, we can improve our preparedness and reduce the damage caused by forest fires. 

 

MATERIALS AND METHODS 

Sampling and analysis of samples 

Saravan forest is located at 37°5′35″ north latitude and 49°24′29″ east longitude. It encompasses the outskirts of 

Rasht City and the Rudbar forestry area in Iran (Fig. 1). This area falls within the humid to very humid climatic 

zone. The characteristic soil profile of this region exhibits significant depth, well-developed horizons, a high 

organic matter content, and a neutral to acidic pH, spans over 8937 ha with an altitude ranging from 50 m to 600 

m above sea level (Farahi et al. 2012). This forest is a crucial natural resource for the region, but it is under constant 

threat from forest fires. To better understanding the factors contributing to forest fires in this area, we developed 

a model using various data sources. Historic records of forest fire data were obtained from the Department of 

Natural Resources and Watershed Guilan, while meteorological data such as air pressure and wind direction were 

collected from the Guilan Meteorological Organization. These data sets covered the years 2007 to 2017. 

Additionally, using GPS from Guilan Environmental Protection Agency, we identified roads, rivers, and 

agricultural areas in the region. Despite the importance of this area, there was no suitable information layer 

available in the Environmental Protection and Natural Resources Organization of Guilan Province. As a result, all 

required layers were produced. Using ArcGIS and ENVI software, we created these layers and prepared the criteria 

that would affect the likelihood of forest fires. These criteria were then categorized into three parts: human factors 

(such as agriculture, roads, and villages), environmental factors (including slope, slope direction, and rivers), and 

climate factors (air pressure, radiation, and wind speed). To incorporate these criteria into our model, we converted 

the resulting maps of the study area into a matrix that could be inputted into MATLAB software. Despite the 

challenges faced during data collection and processing, we believe that our model will provide valuable insights 

into the factors that contribute to forest fires in the Saravan forest and aid in developing strategies for its 

conservation and protection. In the first stage of data mining, the correlation coefficient between the assumed 

features was extracted. The Pearson correlation coefficient was used in this study, which measures the relationship 

between two quantitative variables. The coefficient value ranges from 1 to -1, with higher values indicating a 

stronger correlation between the variables being considered. A value close to 1 or -1 is indicative of a high 

correlation in the positive or negative direction, respectively. Meanwhile, a value close to 0 implies that there is 

no significant correlation between the variables. The Pearson correlation coefficient has been widely utilized in 

different fields, including finance, economics, and social sciences (Hunt 1986). By quantifying the extent of the 

relationship between different variables, it becomes possible to identify the most relevant features for inclusion in 

the model and exclude redundant information. Thus, this coefficient serves as a crucial tool for effective data 

preprocessing in machine learning applications. 



 
Fig. 1. Map of sampled stations. 

 

In summary, through the use of the Pearson correlation coefficient, we can gain valuable insights into the strength 

and nature of the relationship between different variables and improve the overall accuracy of the model, as 

follows: 

 

P (x, y) = r (xy) (cov (x, y)) ⁄ (σx σy)                                                                                                         (1) 
 

where: cov is the covariance, σx is the standard deviation X and σy is the standard deviation of Y. Then, two 

clustering methods - Fuzzy C-mean and K-medoids - were employed to model fire risk prediction in the Saravan 

region, using the inputs identified in earlier stages. Before this, however, it was necessary to normalize the input 

data due to the heterogeneous nature of the variables considered. In cases where there is a large discrepancy 

between the maximum and minimum values of the data, distance criteria can become inefficient in clustering 

algorithms, and the size of the data can have a significant impact on overall accuracy. Given that our input criteria 

consisted of variables with different definitions and widely varying intervals, pre-processing was deemed essential. 

To achieve this, we utilized the base 10 logarithms to make the data more homogeneous across a specific range. 

The polyfit command was then applied to standardize all the data within the range of 0 and 1, which was completed 

through the use of the polyval command or linear mapping, a function that preserves the actions of addition and 

scalar multiplication. All of these operations were carried out within the MATLAB (version R2019a) software 

environment, providing a reliable platform for pre-processing the data before clustering. This step was crucial in 

ensuring the accuracy and effectiveness of the subsequent clustering methods employed. By utilizing both Fuzzy 

C-mean and K-medoid clustering techniques, we were able to model fire risk prediction in the Saravan region with 

an improved level of accuracy, benefiting from the standardized input data processed using the methods outlined 

above. In the following stage of this study, clustering learning methods were employed to effectively model fire 

risk potential. This method represents one branch of multivariate statistical analysis and unsupervised learning in 

artificial neural networks. One of the primary benefits of utilizing these methods is that it allows for learning 

without pre-existing labels and minimal human supervision. The process of clustering divides society into several 

sub-communities, known as clusters, where samples are classified based on their similarity to others within the 

same cluster, while also being dissimilar to those outside the cluster (Kaufman et al. 2005; Karimov et al. 2015; 

Littell et al. 2016). These clusters are classified based on the relationships between them, a crucial aspect of 

clustering analysis (Jiawei et al. 2001). The multilayer perceptron (MLP) model of artificial neural network was 

utilized in conjunction with an error backpropagation training procedure to model fire risk potential effectively. In 

spatial analysis, MLPs, self-organizing maps (SOMs), and radial basis functions (RBFs) have been primarily relied 

upon due to their practical capabilities. Among these options, MLPs remain a popular choice. Our ANN model 

consisted of three layers, with 10 input nodes, five nodes in the middle layer, and one node in the output layer. To 

train the ANN model effectively, we utilized both unsupervised clustering methods, such as the fuzzy c-means 



(FCM) algorithm, and supervised algorithms, like the k-medoids algorithm. This approach enabled us to leverage 

the strengths of both methodologies to produce more accurate and reliable models for predicting fire risk potential 

in Saravan region. 

 

K-Medoids algorithm  

The study utilizes an improved k-medoids algorithm as the first clustering technique. This algorithm is similar to 

the k-means algorithm, but instead of using the mean, it uses the actual sample itself as a representation of the 

cluster. The main objective of the algorithm is to minimize the sum of differences between the points in a cluster 

and the center point of the cluster. Each medoid represents the most central data point of a cluster. Noteworthy, 

this algorithm is generally less sensitive to data outside the cluster when compared to other clustering algorithms 

(Krishnapuram et al. 1999). To implement the k-medoids algorithm, we first randomly select the initial 

representatives for the k clusters. We then identify the nearest representative for each sample and create a similarity 

matrix (n-k). Samples are then grouped into one of the k clusters. To assess the quality of the clusters obtained, 

we replace a sample with one of the representative samples and calculate the cost of this replacement. If the cost 

is negative, meaning the new assignment is a better fit, the transfer takes place. This step is repeated until the 

center point of the clusters remains constant in two consecutive iterations (Kaufman & Rousseeuw 2005). The 

PAM (Partitioning Around Medoids) algorithm is a widely used and effective clustering method in K-medoids 

analysis. However, its high iteration requirement makes it unsuitable for large datasets (Kaufman & Rousseeuw 

2005). To address this issue, K-medoid clustering also includes CLARA and CLARANS algorithms. CLARA is 

designed specifically for larger datasets. It randomly selects samples from the dataset and applies the PAM 

algorithm to them, generating the best clustering output. The rest of the database components are then assigned to 

their nearest cluster based on the generated output (Wei et al. 2000). In contrast, CLARANS is based on off-center 

data. In this study, we employed the PAM algorithm as it is one of the most commonly used and powerful 

techniques in K-medoids clustering. When calculating data spacing, the Euclidean distance criterion was applied, 

which is a standard approach in K-medoids clustering (Dunn 1973; Krishnapuram et al. 1999; Nayak et al. 2015). 

Specifically, we calculated and stored the distances between each datum and its corresponding center in a 

designated variable, consistent with established practice in clustering research. 

 

FCM algorithm 

The current study employs the Fuzzy c-means algorithm as a second approach. This algorithm employs a 

membership function to assign the degree of membership to each data point for each cluster. The algorithm then 

iteratively updates the membership values and cluster centroids until convergence, resulting in the final clusters. 

The FCM algorithm is particularly suitable for cases where the boundaries between clusters are not well-defined, 

as it allows for overlapping clusters and soft assignments of data points to multiple clusters (Bezdek 1981). The 

Fuzzy c-means algorithm follows these steps: 

Random initialization of cluster membership values μij. 

Calculation of the cluster centers. 

Updating the membership values based on the following equation: 

Calculation of the objective function Jm. 

Repeating steps 2-4 until the value of Jm stops improving beyond a specified threshold or after reaching a 

predetermined number of iterations. 

For this particular study, five clusters and corresponding centers were selected, and a threshold level of 1 km + 0.5 

was employed. To compare the performance of both algorithms used in the research, a confusion matrix was used 

(Fawcett 2006). 

   

Model validation 

To assess the accuracy of our model, we employed two widely-used statistical measures: the root means square 

error (RMSE), and the value of the coefficient of determination (R2; Shahin et al. 2008). R2 value indicates how 

much variation in the dependent variable can be accounted for by changes in the independent variable(s), while 

RMSE quantifies the average error between predicted and observed values. In other words, R2 determines what 

percentage of changes in the dependent variable are affected by the corresponding independent variable, and 

RMSE compares the prediction errors of a data set. The higher the RMSE and R2 values, the better the data fit 

together. The formulas RMSE and R2 are as follows (Lewis-Beck & Skalaban 1990; Chai & Draxler 2014). 



R2 =  ∑ (Oi − O̅i)(Pi − P̅i)
2n

i=1 (Pi − P̅i)
2⁄ (Pi − P̅i)

2                                                                                                    (2) 

√∑ (Oi − Pi)
n
i=1 n⁄                                                                                                                                                  (3)                                                                  

 

where Oi is the observational data, Pi is the simulated data, P is the simulated data by the model, and n is the 

number of data. 

The Mean Squared Error (MSE) is a commonly used metric for measuring the accuracy of a regression model. It 

is calculated as the average squared difference between the predicted and actual values in the test dataset. The 

formula for calculating MSE is as follows (Mood et al. 2013): 
 

   MSE =
1

n
∑ (yi − ŷi)

2n
i=1                                                                                                                                     (4) 

 

where the averaging operation is performed with ∑2i = 1 and (yi-y ̂i)2 calculates the square value of the error of 

each data (Mohamed et al. 2008). Eventually, to objectively compare the performance of two algorithms used for 

cluster selection in the clustering method, a Confusion Matrix was employed. This evaluation technique, 

introduced by Fawcett (2006), provides a tabular representation of the true positive, false positive, true negative, 

and false negative rates of the algorithms, allowing for an in-depth analysis of their effectiveness. By assessing 

metrics such as accuracy, precision, recall, and F1 score derived from the confusion matrix, one can gain insights 

into the suitability of each algorithm for generating accurate and meaningful clusters. Thus, this approach 

facilitates an unbiased comparison of the algorithms and enables the selection of the optimal one for the specific 

task at hand.  

 

RESULTS 

Fig. 2 presents a map of various environmental variables that were analyzed in the study area. The map is divided 

into ten layers, each representing a different variable. The first layer, labelled "Aspect," indicates the direction in 

which each portion of the landscape is facing. The second, "Slope," shows the angle of the terrain. The third, 

"Wind Speed," displays the average wind speed at each location.  

The fourth, "Air Pressure," indicates the air pressure at each point on the map. The fifth, sixth, and seventh layers 

exhibit the distance to the nearest road, river, and agricultural area, respectively. The eighth, "Solar Radiation," 

displays the amount of solar radiation that each location receives. The ninth, "Canopy Cover Density," indicates 

the amount of vegetation cover at each location. Finally, the tenth, "Forest Type," shows the different types of 

forests in the study area. The present study outlines the findings of our investigation on fire estimation models. 

Our analysis of the correlation coefficient revealed a relatively high degree of similarity between forest type and 

canopy cover density, as well as between air pressure, distance to road, and forest type. This finding is not 

surprising given the strong influence of forest texture and air pressure on climate. The correlation coefficient 

analysis table enables designers and analysts to streamline their decision-making process by identifying and 

eliminating variables that exhibit significant redundancy. In Table 1, the primary diameter is marked with "1", 

while highly similar variables are denoted by an absence of a rounded square. Overall, our findings suggest that 

data collection was appropriately conducted, as evidenced by the relatively low degree of similarity in correlation 

coefficients across various variables. 

 

General procedure for allocating potential fire hazard points in K-Medoids and FCM  

The steps taken in both the K-medoids and FCM algorithms are highly similar, differing mainly in the methodology 

employed for data center allocation. Specifically, while the K-medoids algorithm utilizes medoid data centers, the 

FCM algorithm employs a centroid data center evaluated fuzzily (Wei et al. 2000). In both cases, we have five 

clusters and corresponding cluster centuries, with a threshold level of 1 km deemed desirable for each cluster (as 

demonstrated in Tables 2-3). Both algorithms evaluate data based on its distance from the center, with the distance 

between each data point and its corresponding center calculated accordingly.  

By assuming a maximum of 15% of the maximum distance between the accident point and the center of its 

corresponding cluster, the high probability space for fire can be determined. Adjusting this distance up or down 

will correspondingly decrease or increase the likelihood of fire. Noteworthy, the aforementioned approaches rely 

heavily on distance calculations to determine the probability space for fire. As such, fine-tuning the maximum 

allowable distance between the accident point and the cluster center through further experimentation may refine 

the accuracy of the resulting predictions.  



 

 



 

 

 

 

 
Fig. 2. Map of A) Aspect, B) Slope, C) wind speed, D) Air pressure, E) Distance to the road, F) Distance, to the river, G) 

Distance to agriculture, H) Solar radiation, I) Canopy cover density, J) forest type in the study.



Table 1. Pearson correlation coefficient analysis table. 
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Percentage of canopy 

cover density 

1.0000 0.1416 0.5139 0.0506 0.1775 0.5424 -0.0679 -0.3392 0.8787 -0.1179 

Aspect 0.1416 1.0000 -0.0251 0.0135 -0.0306 0.0588 -0.0859 -0.0101 0.1526 -0.0350 

Air pressure 0.5139 -0.0251 1.0000 0.1711 0.0353 0.6146 0.0207 -0.3929 0.6121 -0.2598 

Distance to agriculture 0.0506 0.0135 0.1711 1.0000 -0.0025 0.1246 -0.0791 0.0818 0.0643 0.1795 

Distance to rivers 0.1775 -0.0306 0.0353 -0.0025 1.0000 -0.0572 -0.3865 0.1266 -0.0742 0.0637 

Distance to roads 0.5424 0.0588 0.6146 0.1246 -0.0572 1.0000 0.0644 -0.3269 0.7234 -0.2613 

Slope -0.0679 -0.0859 0.0207 -0.0791 -0.3865 0.0644 1.0000 -0.4828 0.0941 -0.0723 

Solar radiation -0.3392 -0.0101 -0.3929 0.0818 0.1266 -0.3269 -0.4828 1.0000 -0.4578 0.2057 

Forest type 0.8787 0.1526 0.6121 0.0643 -0.0742 0.7234 0.0941 -0.4578 1.0000 -0.2779 

 

Validation 

According to the results, the RMSE, R2, and MSE for the model used in this study are respectively equal to 0.2861, 

99.38, and 0.01919, which indicates the reliability of the model. 
 

 

Table 2. Clustering of studied parameters by K-Medoids. 
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0.802 1 0.000 0.473 0.329 0.460 0.443 0.281 0.807 0.952 0.000 0.229 

0.733 2 0.667 0.598 0.617 0.703 0.798 0.990 0.469 0.813 1.000 0.307 

0864 3 0.802 0.767 0.189 0.677 0.692 0.508 0.651 0.703 1.000 0.776 

0641 4 0.667 0.480 0.719 0.630 0.620 0.882 0.823 0.257 1.000 0.623 

1.299 5 0.333 0.598 0.309 0.700 0.540 0.432 0.515 0.816 0.333 0.802 

 
 

Map of clustering with FCM and K-Medoids 

In this step, the fire-prone areas maps based on FCM and K-Medoids for forecasting fire-prone areas 

wereproduced (Fig. 3). The results of comparing FCM and K-Medoids are shown in Table 4. The blue columns 

correspond to the prediction similarity percentage of both algorithms. Orange cells are cases of fire by the FCM algorithm that 

were not confirmed by the K-medoids algorithm. 

 

 



Table 3. Clustering of studied parameters by FCM. 
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0.713 1 0.329 0.593 0.692 0.624 0.517 0.684 0.786 0.341 0.000 0.716 

1.324 2 0.722 0.589 0.707 0.685 0.829 0.587 0.705 0.923 1.000 0.501 

1.087 3 0.128 0.329 0.647 0.639 0.533 0.684 0.783 0.144 0.000 0.658 

0.812 4 0.052 0.228 0.627 0.681 0.532 0.682 0.809 0.059 1.000 0.700 

0.630 5 0.660 0.688 0.673 0.591 0.888 0.777 0.425 0.961 0.333 0.499 

 

 

 
Fig. 3. Final map for forecasting fire-prone areas with a) FCM, b) K-Medoids. 

 

Table 4. Confusion matrix analysis table for FCM and K-medoids. 

 

DISCUSSION 

The Saravan Forest Park in Rasht, Guilan Province, represents a vital old-growth forest region renowned for its 

rich biodiversity and unique plant species. Despite its ecological significance, the area has been subject to several 



challenges, including being utilized as a landfill site by neighbouring cities (Piruz et al. 2010), clearcutting 

activities aimed at making room for power towers (Yaghmaeiyan Mahabadi et al. 2017), and the proliferation of 

dense shrubs - all of which have contributed to an alarming frequency of fires each year (Frahi et al. 2012). This 

study compared the performance of two clustering algorithms, Fuzzy C-Means and K-medoids, in modelling fire 

distribution within Saravan Forest Park. The purpose was to identify high-risk areas for wildfire. The findings 

showed that clustering-based methods are essential for improving forest fire prediction models. Specific input 

criteria such as recorded fire locations, distance from farmland, road proximity, river proximity, air pressure, solar 

radiation, slope, aspect, wind speed, and percentage of canopy cover density are key predictors of fire risk. 

Incorporating these variables increases the accuracy of the model, resulting in more effective predictions. This 

study highlights the importance of using advanced analytical tools and relevant input criteria to predict and 

manage wildfires in ecologically sensitive regions such as Saravan Forest Park. Moreover, this study showed the 

issue of forest fires and the importance of using advanced analytical tools and relevant input criteria to predict and 

manage wildfires in ecologically-sensitive regions. Our findings align with the results of another authors 

(Sathishkumar et al. 2023).  

The effective prediction and management of forest fires are critical challenges for forest managers worldwide. 

This study highlights the potential of machine learning techniques, particularly clustering-based methods, in 

addressing these challenges. Specifically, the successful application of such methods in Hyrcanian Forests 

underscores their practical utility. Two algorithms were employed in this research to analyse fire probability 

within the forest. The resulting matrix analysis table revealed five distinct classes of fire probability. The first 

class, called the hot spot floor, includes areas located within 1 km of the nearest cluster centre. The second, 

identified as the first-class high-risk floor, corresponds to areas situated between 1-5 km from the nearest cluster 

centre. The third, known as the second-class high-risk floor, encompasses areas located 5-10 km from the cluster 

centre. The fourth, referred to as the first-class low-risk floor, covers areas positioned from 10-50 km from the 

centre of the cluster. Finally, the fifth, designated as the second-class low-risk floor, consists of areas situated 

between 50-255 km from the cluster centre. By identifying these five classes of fire probability, this study offers 

valuable insights to forest managers, enabling them to develop effective strategies in order to prevent or mitigate 

forest fires. The current study utilized a confusion matrix to evaluate the performances of two algorithms for 

predicting forest fires. The results were presented in three tables: (i) a large table containing pixel information for 

the study area, (ii) a right-hand table displaying rows of pixel surfaces for the study area using the FCM algorithm, 

and (iii) a bottom table showing pixel levels in the study area with priority given to the K-medoids algorithm. 

Using linear analysis, blue columns were created to represent the percentage of similarities in fire predictions 

made by both algorithms. The analysis revealed that 38.7% of pixels fell under the hotspot category in both 

algorithms, while 79.1%, 63.9%, 96.5%, and 100% of pixels were categorized as first-degree high-risk, second-

class high-risk, first-class low-risk, and second-class low-risk, respectively. The orange cells present in the table 

indicate fire hazard predictions made by the FCM algorithm that was not confirmed by the K-medoids algorithm. 

These discrepancies reflect differences between the two models. In particular, 61.3% of pixels were classified as 

hotspots by the FCM algorithm, while 20.9%, 36.1%, and 9.5% were identified as first-class high-risk, second-

class high-risk, and first-class low-risk categories, respectively. A column analysis was also performed with a 

priority given to the K-medoids algorithm. This analysis demonstrated that 49.2% of pixels were identified as 

hotspots by both algorithms, while 72.1%, 32.1%, 96.5%, and 100% of pixels were categorized as first-class high-

risk, second-class high-risk, first-class low-risk, and second-class low-risk, respectively (as indicated in blue). 

Orange cells in this table represent fire hazard predictions made only by the K-medoids algorithm that where not 

confirmed by the FCM algorithm. Specifically, 50.8% of pixels were categorized as hotspots, while 27.9%, 67.9%, 

and 3.5% fell under the high-risk, second-class high-risk, and low-risk categories, respectively. In this study, we 

compared the performance of two algorithms in predicting fire risk locations. Observations revealed an elevation 

in commonality in higher classes of analysis for both row and column analyses of the study area, suggesting a 

decrease in algorithm sensitivity as one move away from the clusters' centres. Overall, the fuzzy algorithm 

demonstrated marginally superior performance over the K-medoids algorithm, with an overall subscription rate 

of 372.2% compared to 349% for the K-medoids algorithm. These findings are consistent with previous studies 

demonstrating the effectiveness of clustering algorithms in wildfire risk modelling. For instance, Bharany et al. 

(2022) reported that clustering algorithms exhibited good performance in predicting wildfire risk. Moreover, 

studies applying the FCM algorithm to cluster data in neural network training have shown its effectiveness in 



improving the input-output relationship, thus increasing the likelihood of predictive accuracies. For example, Xu 

& Wunsch (2005) and Esakar & Chaudhari (2013) reported that the FCM algorithm was effective in improving 

the accuracy of predictive models. Rakshit et al. (2021) in their study, used the machine learning method to predict 

the risk of forest fires. They focused on using meteorological data while their paper considered a broader range 

of factors such as distances to farmland, roads, and rivers, air pressure, solar radiation, slope, aspect, wind speed, 

and percentage of canopy cover density. Additionally, the other paper aimed to predict the depth of risk for specific 

areas, while their paper focuses on identifying locations at risk of fire. In one of the most recent articles, 

Sathishkumar et al. (2023) similar to our study, used the machine learning method to predict the risk of forest 

fires.  They used different methodologies to address different forest fire-related challenges. Also, in contrast to 

their result, our study demonstrates high accuracy in predicting fire hazards and exhibits superior performance 

compared to other clustering techniques for identifying potential fire hazard sites. However, their results are 

consistent with our results in showing the potential of machine learning algorithms to improve forest fire 

management and reduce the environmental damage caused by forest fires. 

 

CONCLUSIONS  

The increasing occurrence of wildfires has become a global concern, and the Saravan Forest Park in Guilan 

Provine, North Iran has also experienced multiple fire outbreaks. To address this issue, the study aimed to 

understand the causes of wildfires in the area and develop models using clustering algorithms for assessing fire 

risks. The findings of the study suggest that it is necessary to have a good understanding of the reasons behind the 

occurrence of wildfires to devise effective prevention strategies (Rakshit et al. 2021; Shreya et al. 2022). In 

addition, the study's framework can be used as a prototype model that can be customized by changing input 

parameters and algorithms. This approach allows fire prediction models to be tailored to specific regions where 

wildfire incidence is on the rise. The study evaluated two clustering algorithms, Fuzzy C-means (FCM) and K-

medoids, for their ability to identify high-risk areas. The results indicate that both algorithms can predict high-

risk areas effectively. However, FCM was slightly better than K-medoids in terms of its predictive accuracy. 

Noteworthy, the accuracy of clustering algorithms drops, by elevation in the distance from the fire cluster centre. 

Overall, the study highlights the potential of clustering algorithms in predicting fire risks and provides useful 

insights into managing fire hazards. The findings offer relevant information that could inform land management 

policies, such as prescribed fires and resource allocation for firefighting activities. The implications of this study 

go beyond the Saravan Forest Park and contribute to the broader field of forest fire management. Future research 

aimed at enhancing the accuracy and efficiency of wildfire risk models could build on the study's findings. This 

study provides valuable insights into the effectiveness of clustering algorithms in wildfire risk modelling. 

However, several limitations should be considered when interpreting the findings. First, our analysis was limited 

to the Saravan Forest Park in Guilan Province, North Iran, and our results may not be generalizable to other 

regions with different climates, ecosystems or topographical features. Thus, further research is required to 

determine the extent to which these algorithms can be applied in other settings. Second, we only evaluated the 

performance of two clustering algorithms and did not compare them with other modelling approaches, such as 

machine learning or deep learning algorithms. Future research could expand on these findings by comparing 

clustering algorithms with other machine learning methods and evaluating their potential to predict wildfire risk 

locations. Third, further research is needed to determine the most effective methods for validating predictive 

models, such as the quantification of predictive probability accuracy. Future studies could employ ground-truthing 

exercises to validate the predictive power of these models. Ground-truthing involves collecting data from the 

forest floor, such as leaf litter depth, fuel load, and vegetation density, to verify the accuracy of the predictive 

models. This approach has been employed in previous studies and could offer a reliable validation method for 

wildfire risk prediction models. Despite these limitations, this study provides an important contribution to the field 

of wildfire risk modelling and management. By demonstrating the potential of clustering algorithms such as FCM 

and K-medoids, this study offers promising avenues for developing proactive strategies to mitigate the risk of 

catastrophic wildfires. Future research could build on these findings by exploring other clustering algorithms or 

comparing clustering with other machine learning and deep learning models. 

 

ACKNOWLEDGEMENTS 

We thank Dr Abdul Reza Alavi Qarebagh for his assistance and comments that improved the paper. 



REFERENCES  

Adab, H Kasturi Kanniah, KD & Solaimani, K 2013, Modeling forest fire risk in the northeast of Iran using remote 

sensing and GIS techniques. Natural Hazards (Dordr) 65: 1723-1743, DOI:10.1007/s11069-012-0450-8. 

Argañaraz, JP Pizarro, GG Zak, M Landi, MA & Bellis, LM 2015, Human and Biophysical Drivers of Fires in 

Semiarid Chaco Mountains of Central Argentina. Sci. Total Environment, 520: 1-12, https://doi.org/10.1016/ 

j.scitotenv.2015.02.081. 

Bharany, S Sharma, S Frnda, J Shuaib, M Khslid, MI Hussain, S Iqbal, J & Uliah, SS 2022, Wildfire monitoring 

based on energy efficient clustering approach for FANETS, Drones, 6: 193. 

Bezdek, J 1981, Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, DOI: 

10.1007/978-1-4757-0450-1. 

Chai, T & Draxler, RR 2014, Root Mean Square Error (RMSE) Or Mean Absolute Error (MAE)? Geoscientific 

Model Development (GMD) & Discussions, 7: 1525-1534, DOI: 10.5194/gmdd-7-1525-2014. 

Dunn, JC 1973, A Fuzzy Relative of the ISODATA Process and its use in detecting compact well-separated 

clusters. Journal of Cybernetics, 3: 32-57, DOI: 10.1080/01969727308546046. 

Esakar, S & Chaudhari, M 2013, A review of clustering algorithms, www.ijcst.com 4. 

Eskandari, S 2015, Investigation of relation between climate change and fire in the forests of Golestan Province, 

IJFRPR. 13. 

Eskandari, S & Chuvieco, E 2015, Fire danger assessment in Iran based on geospatial information. International 

Journal of Applied Earth Observation and Geoinformation, 42: 57-64, DOI: 10.1016/j.jag.2015.05.006. 

Eskandari, S Oladi, J Jalilvand, H & Saradjian, MR 2013, Role of human factors on fire occurrence in district 

three of Neka Zalemroud Forests, Iran, World Applied Sciences Journal, 27, DOI: 10.5829/idosi.wasj. 

2013.27.09.708. 

Frahi, E Ghodskhahdaryaei, M Mohamadi Samani, K & Amlashi, M 2012, Review of fire sensitive areas with 

emphasis on drought impact with the joint use of DSI, AHP and GIS (Case study: Forest Saravan, Guilan 

Province), Forest and Range Protection Research. 10: 83-101, https://www.sid.ir/en/Journal/ViewPaper.aspx? 

ID=529534. 

Fawcett, T 2006, An introduction to ROC analysis, Pattern Recognition Letters, 27 (8): 861-74, DOI: 10.1016/ 

j.patrec.2005.10.010. 

Giwa, O & Abdsamad, B 2018, Fire detection in a still image using color information. https://doi.org/10.48550/ 

arXiv.1803.03828. 

Global Forest Watch 2018 Tree cover loss in Rasht, Guilan, Iran, https://www.globalforestwatch.org. 

Hunt, RJ 1986, Percent agreement, Pearson's correlation, and Kappa as Measures of Inter-Examiner reliability, 

Journal of Dental Research, 65: 128-30, DOI: 10.1177/00220345860650020701. 

Jafarzadeh, A Mahdavi, A & Jafarzadeh, H 2017, Evaluation of forest fire risk using the Apriori Algorithm and 

Fuzzy C-Means Clustering, DOI: 10.17221/7/2017-JFS. 

Jain, P Cogan, SCP Subramanian, SG Crowley Taylor, S & Flannigan, MD 2020, A review of machine learning 

applications in wildfire science and management. Environmental Reviews, 28: 478-505. https://doi.org/ 

10.1139/er-2020-0019. 

Jiawei, H Kamber, M & Tung, A 2001, Spatial clustering methods in data mining: A survey. Data Mining and 

Knowledge Discovery, DATAMINE. 

Karimov, J Ozbayoglu, M & Dogdu, N 2015, K-means performance improvements with centroid calculation 

heuristics both for serial and parallel environments. In: 2015 IEEE International Congress on Big Data, 444–

451, DOI: 10.1109/BigDataCongress.2015.72.  

Kaufman, L & Rousseeuw, PJ 2005, Finding groups in data: An Introduction to cluster analysis. Wiley series in 

probability and mathematical statistics, Hoboken, NJ: Wiley-Intercedence. http://catdir.loc.gov/catdir/ 

description/wiley033/89031460.html. 

Khatami, A Mirghasemi, S Khosravi, A Lim, CP & Nahavandi, S 2017, A new PSO-Based approach to fire flame 

detection using K-Medoids Clustering, Expert Systems with Applications, 68: 69-80, DOI: 10.1016/j.eswa. 

2016.09.021. 

Khatami, A Mirghasemi, S Khosravi, A & Nahavandi, S 2015, An efficient hybrid algorithm for fire flame 

detection. In 2015 International Joint Conference on Neural Networks (IJCNN), edited by IEEE Staff, 1-6, 

Piscataway: IEEE. 



Krishnapuram, R Joshi, A & Liyu, Y 1999, A Fuzzy Relative of the K-Medoids algorithm with application to web 

document and Snippet Clustering. In FUZZ-IEEE'99, 1999 IEEE International Fuzzy Systems. Conference 

Proceedings (Cat. No.99CH36315), 1281-1286 Vol. 33. 

Lewis-Beck, MS & Skalaban, A 1990, The R-squared: Some straight talk. Political Analysis, 2: 153-171, 

DOI:10.1093/pan/2.1.153. 

Littell, JDL Peterson, Riley, KL Yongquiang, L & Luce, CH 2016, A review of the relationships between drought 

and forest fire in the United States. Global Change Biology, 22 (7): 2353-2369. 

Mood, Al Franklin, M Graybill, A & Duane, CB 2013, Introduction to the theory of statistics. 3. ed., McGraw 

Hill Education (India) ed., 13. reprint. New Delhi: McGraw-Hill Education (India). 

Nayak, J Naik, B & Behera, HS 2015, Fuzzy C-Means (FCM) clustering algorithm: A decade review from 2000 

to 2014, In: Computational Intelligence in Data Mining, 2: 133-149: Springer, New Delhi. 

https://link.springer.com/chapter/10.1007/978-81-322-2208-8_14. 

Mohamed, SH Jaksa, M & Maier, H 2008, State of the art of artificial neural networks in geotechnical engineering, 

Electronic Journal of Geotechnical Engineering. 

Piruz, B Razdar, B Bagherzadeh, A & Kavianpour, M 2010, Assessment of the damage caused by the dumping 

of waste from Rasht city in Saravan Forest area located in Gilan Province, National Conference on Man, 

Environment and Sustainable Development. 

Rakshit, P Sarkar, S Khan, S Saha, P Bhattacharyya, S Dey, ... & Pal, S 2021, Prediction of forest fire using 

machine learning algorithms: The search for the better algorithm. In 2021 6th International Conference on 

Innovative Technology in Intelligent System and Industrial Applications (CITISIA), pp. 1-6. IEEE.  

Sathishkumar, VE, Cho, J Subramanian, M & Naren, O 2023, A forest fire and smoke detection using deep 

learning-based learning without forgetting. Fire Ecology, 19: 1-17. 

Shahin, MA Jaksa, MB Holger, MR 2008, State of the art of artificial neural networks in geotechnical engineering, 

Electronic Journal of Geotechnical Engineering, 8: 1-26. 

Shreya, M Rai, R & Shukla, S 2022, Forest fire prediction using machine learning and deep learning techniques. 

In: Computer networks and inventive communication technologies: Proceedings of Fifth ICCNCT 2022, pp. 

683-694, Singapore: Springer Nature Singapore. 

Tien Bui, D van Le, H & Hoang, ND 2018, GIS-based spatial prediction of tropical forest fire danger using a new 

hybrid machine learning method ecological informatics, 48: 104-116, DOI: 10.1016/j.ecoinf.2018.08.008. 

Wei, Ch P Lee, YH Hsu Che, M 2000, Empirical comparison of fast clustering algorithms for large data sets. In 

Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, edited by Ralph H. 

Sprague, 10: IEEE Computer Society, DOI:10.1109/HICSS.2000.926655. 

Xu, R & Wunsch, D 2005, Survey of clustering algorithms. IEEE Transactions on Neural Networks, 16: 645-678. 

DOI: 10.1109/TNN.2005.845141. 

Yaghameiyan mahabadi, N Khosroabadi, M & Asadi, H 2017, The effect of afforestation and topography on some 

physicochemical characteristics affecting soil quality in Saravan region of Gilan. Soil Research (Soil and Water 

Sciences), 31: 277-290. 

Zareka, A Zamani, B Ghorbani, S Moalla, M & Jafari, H 2013, Mapping spatial distribution of forest fire using 

MCDM and GIS (Case study: Three forest zones in Guilan Province). Irianin Journal of forest and polar 

research, 21:218–30. DOI:10.22092/ijfpr.2013.3854.  

Zhong, Zh Huang WLi, S & Zeng, Y 2017, Forest fire spread simulating model using cellular automaton with 

extreme learning machine. Ecological Modelling. 348: 33-43, DOI: 10.1016/j.ecolmodel.2016.12.022. 

 

 


