Municipal solid waste landfill impact on sediments and surface water quality of Amsal River: A case study of Ziama Mansouriah landfill (Northeastern Algeria)

Leila Benfridja1, Abderrezak Krika2*, Fouad Krika3

1. Department of Environmental Sciences and Agronomic Sciences, Faculty of Nature Life and Sciences, University of Mohamed Seddik BenYahia Jijel, BP 98 Ouled Aissa, Jijel 18000, Algeria
2. Laboratory of Biotechnology, Environment and Health, University Mohamed Seddik BenYahia Jijel, BP 98 Ouled Aissa, Jijel (18000) Algeria
3. LIME laboratory, Faculty of Sciences and Technology, University of Jijel BP 98 Ouled Aissa, Jijel 18000, Algeria

*Corresponding Author’s Email: a.krika@hotmail.com

ABSTRACT
Landfills represent possible sources of diverse contaminants that can cause human health and ecological problems. The purpose of this study is to assess the pollution caused by a leachate from Ziama Mensouriah municipal landfill (north-eastern Algeria) affecting sediments and surface water. The water quality has been evaluated using River Pollution Index (RPI). Sediment contamination assessment was carried out using the pollution indicators including: contamination factor (CF), pollution load index (PLI) and geo-accumulation index (Igeo). According to the results, the RPI of Amsal River indicates an unpolluted water at site 1 (S1) (RPI = 2.5), severely polluted water at landfill effluent discharge (S2) (RPI = 8.25) and moderately polluted once at site (S3) (RPI = 5.5). In sediments, the order of mean concentration (µg g⁻¹) of metals was Pb (156.2) > Cd (1.76). Furthermore, spatial distribution of both metals in sediments showed a significantly higher concentration at S2 indicating that metal pollution is caused by leachate from the studied municipal landfill. The Igeo values reveal that Pb was significantly accumulated compared to Cd. The highest CF values (>6) of Pb and Cd determined at S2 promote a high Pb and Cd contamination in that specific station. The PLI results showed that all sites, except for S1, were moderately to extremely heavy contaminated.

Key words: Landfill, Water, Sediments, Heavy metals, Algeria.

INTRODUCTION
Landfills constitute potential sources of different pollutants that could generate human health and environmental problems (Vural et al. 2017). Areas near landfills have a greater possibility of water contamination because of the potential pollution source of leachates originating from the nearby site. Leachates are produced as a result of rainwater percolation through the waste layers; physical, chemical, biochemical and microbiological reactions of the organics within the waste mass and due to the inherent or interstitial water content of the waste (Li et al. 2010; Schiopu & Gavrilescu 2010). The migration of landfill leachates into surface or groundwater is considered to be a serious environmental problem at both uncontrolled and engineered municipal landfill sites (Mor et al. 2006; Durmusoglu & Yilmaz 2006). The impact of landfill leachate on the surface and groundwater has given rise to a number of studies in recent years (Abu-Rukah and Kofahi 2001; Mor et al. 2006; Han et al. 2014; Talalaj 2014; Alam et al. 2020). Otherwise, assessing the actual impact of municipal solid waste landfills on the quality of surface waters is not an easy task. A variety of waste deposited in landfills cause the penetration of various substances, that are not subject of the periodic analytical studies or are not covered by continuous monitoring, into surface and ground waters (Melnyk et al. 2014).
In Algeria, most of the landfills are situated beside the rivers. This situation has caused wide concern over the water safety. The Amsal River, located close to Ziama Mansouriah, is one of the most important ecosystems playing a very important role in minimizing rural poverty of the local people community (Henniche 2014).

The main objective of this study is (i) to investigate the water quality of Amsal River that receives effluents from the nearby municipal solid waste landfill of Ziama Mansouriah. The quality of water has been estimated using the River Pollution Index (RPI) depending on in-situ and laboratory analysis; (ii) to determine the levels of the toxic heavy metals (Pb and Cd) in sediment; (iii) to explore the degree of contamination and pollution impacts using the following pollution indicators as: contamination factor (CF), pollution load index (PLI) and geo-accumulation index (Igeo); and (iv) to establish baseline data on the present status of the river that can be used by relevant authorities and other investigators.

MATERIALS AND METHODS

Study area

The municipal solid waste landfill site is located in the north east of Jijel, Algeria at latitude 36°39’51” North, longitude 5°28’27″ East, in the municipality of Ziama Mansouriah (Fig. 1). This landfill situated at the bank of Amsal River which was constructed without any lining preventing leaking of the leachate and served as the principal municipal waste disposal dump generated by the Ziama Mansouriah City.

The site covers an area of approximately 1.5 ha. It has been operating since 1993 and receives around 28000 m3 of municipal solid waste (MSW) per day (Henniche 2014). The climate in the study area is of Mediterranean type with dry warm summers and wet winters. During the winter months (November-February), there is an 80% of precipitation. The average temperature is 9 °C in January and 28 °C in July (Henniche 2014).

Data collection and analysis

According to the accessibility of the study area, three sampling points were chosen for river quality monitoring. Sampling site 1 (S1) is located at the upper part of the river, characterized by small rural communities, representing the background values, i.e. with little interference from anthropogenic activities. Site 2 (S2) is located at landfill effluent discharge and S3 at the upstream under Amsal Bridge with low level of agricultural development (Fig. 1).
Water and sediment analysis

River water and bed sediments were collected along the main stream from February to May 2019. From each sampling point, the water samples were collected using sampler from a depth of 30 cm from the water surface. Before collection, samplers were thoroughly cleaned and rinsed three times with the river water. Water samples were collected in triplicates to estimate the variability resulting from the sampling and analytical procedures using 200 mL-polyethylene bottles and stored in an ice box before transporting to the laboratory (Talabi et al. 2020). Seven water quality parameters were selected for the quality assessment including dissolved oxygen (DO), biochemical oxygen demand (BOD), suspended solid (SS) and ammonia nitrogen. Standard methods of water and wastewater (AHPA 2005) were followed for the water sample collections and analyses. Otherwise, the analytical methods used for measuring the water quality parameters are presented in Table 1.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Unit</th>
<th>Analytical methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>Digital multi-parameter system (Consort C561)</td>
</tr>
<tr>
<td>DO</td>
<td>mg L(^{-1})</td>
<td>Numerical oxymeter</td>
</tr>
<tr>
<td>BOD(_5)</td>
<td>mg L(^{-1})</td>
<td>BOD metre (OXITOP IS6)</td>
</tr>
<tr>
<td>NO(_3)-N</td>
<td>mg L(^{-1})</td>
<td>Spectrophotometer (JENWAY 7315)</td>
</tr>
<tr>
<td>NO(_2)-N</td>
<td>mg L(^{-1})</td>
<td>Spectrophotometer (JENWAY 7315)</td>
</tr>
<tr>
<td>NH(_4)-N</td>
<td>mg L(^{-1})</td>
<td>Spectrophotometer (JENWAY 7315)</td>
</tr>
<tr>
<td>SS</td>
<td>mg L(^{-1})</td>
<td>Filtration and gravimetric</td>
</tr>
</tbody>
</table>

Sediment samples from 0 to 60 cm depth were collected at low tide at each sampling site using plastic sampling utensils and latex gloves to avoid sample contamination with metals. All these samples were placed in polyethylene bags, brought to the laboratory, dried to a constant dry weight at 60°C, and sieved with a 63-μm stainless steel sieve (Wang et al. 2011). Generally, finer sediments contain more heavy metals than the coarser ones. This enrichment is mainly due to surface adsorption and ionic attraction (Szefer et al. 1996). The samples were chemically analysed for detection of heavy metals (Cd and Pb). Accurately 0.5 g dry powder of sample was weighed, and digested with HNO\(_3\) and H\(_2\)SO\(_4\) (2:6:6) as prescribed by Saison et al. (2004). Heavy metals were analysed using atomic absorption spectrometry.

Water quality evaluation index

The river pollution index (RPI) is an index, which is employed to explore monitor trends for both planning and day-to-day management of surface water quality for the public currently.

The latter was computed, using the following equation (Liou et al. 2004).

\[
RPI = \frac{1}{4} \sum_{i=1}^{4} S_i
\]

(1)

where \(S_i\) represents the index scores and the RPI value ranges from 1 to 10.

The RPI involves four variables: dissolved oxygen (DO), biochemical oxygen demand (BOD\(_5\)), suspended solids (SS), and ammonia nitrogen (NH\(_4\)-N), each is ultimately converted to a four-state quality sub-index (1, 3, 6, and 10). The overall index is then divided into four pollution levels (non-polluted, lightly-polluted, moderately-polluted, and grossly-polluted) by averaging the four sub-indices (Table 2) (Liou et al. 2003).

Heavy metal evaluation index

Three indices of geo-accumulation index (I\(_{geo}\)), contamination factor (CF), and pollution load index (PLI) were used to gain information about the sources of metal pollutants and to assess the metal pollution status.

| Table 2. The classification ranks defined by the existing river pollution index (RPI) |
|-----------------|----------------|----------------|----------------|----------------|
| **Items (mg L\(^{-1}\))** | **Unpolluted** | **Negligibly polluted** | **Moderately polluted** | **Severely polluted** |
| DO Above 6.5 | 4.6-6.5 | 2.0-4.5 | Under 2 |
| BOD\(_5\) Under 3 | 3.0-4.9 | 5.0-10 | Above 15 |
| SS Under 20 | 20-49 | 50-100 | Above 100 |
| NH\(_4\)-N Under 0.5 | 0.5-0.99 | 1.0-3.0 | Above 3.0 |
| Index Scores (\(S_i\)) 1 | 3 | 6 | 10 |
| RPI Under 2 | 2.0-3.0 | 3.1-6.0 | Above 6.0 |

Received: April 19, 2020 Accepted: Sep. 12, 2020
DOI: Articde type: Research

©Copyright by University of Guilan, Printed in I.R. Iran
Geo-accumulation index (Igeo)

Geo-accumulation index (Igeo) was developed by Müller (1969) and was calculated by the following equation:

\[I_{geo} = \log_2 \frac{C_n}{1.5 \times B_n} \]

(2)

where \(C_n \) is the measured concentration of the examined metal (n) in the sediment and \(B_n \) is the geochemical background concentration of the metal (n). Factor 1.5 is the background matrix correction factor due to lithogenic effects. The crustal abundance data of Turekian & Wedepohl (1961) were used as background data. The geo-accumulation index consists of seven grades or classes (Table 3).

Contamination Factor (CF)

The contamination factor (CF) of a single trace element was calculated, as suggested by Min et al. (2013) and Kerolli-Mustafa et al. (2015). It was used to evaluate the contamination of the single heavy metal in our samples (Formula 3).

\[CF = \frac{C_{i_sample}}{C_{i_reference}} \]

(3)

where CF is the contamination factor for a heavy metal; \(C_{i_sample} \) is the measured value of the heavy metal in the sediment; \(C_{i_reference} \) is the parameter for calculation.

The contamination levels were classified based on their intensities on a scale ranging from 1 to 6 as shown in Table 4.

Pollution load index (PLI)

The PLI was originally used to determine the pollution load of sediments. It can also give a simple and relative means for the evaluation of the degree of metal pollution (Tomlinson et al. 1980). This parameter is expressed as:

\[PLI = \sqrt[1]{CF_1 \times CF_2 \times CF_3 \times \ldots CF_n} \]

(4)

where \(n \) is the number of metals and CF is the contamination factor. PLI can be classified as no pollution (PLI < 1), moderate pollution (1 < PLI < 2), heavy pollution (2 < PLI < 3), and extremely heavy pollution (3 < PLI) (Tomlinson et al. 1980).

Statistical analysis

The results were expressed as means ± S.D. One-Way ANOVA (Post-hoc Newman-Keuls test) was conducted to show the significant differences among the sites for water and sediment samples at 5% level of significance (Zar 1999). All statistical processes were performed using packaged STATISTICA software (version 8.0).
RESULTS AND DISCUSSION

Physicochemical characteristics of water

The physicochemical parameters of the water samples are presented in Table 5. The results showed that there are significant variations in physicochemical parameters of water among the three different sites.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.57 ± 0.11⁺</td>
<td>8.17 ± 0.21⁺</td>
<td>7.77 ± 0.15⁺</td>
</tr>
<tr>
<td>DO (mg L⁻¹)</td>
<td>5.34 ± 0.03⁺</td>
<td>1.79 ± 0.02⁻</td>
<td>4.75 ± 0.57⁺</td>
</tr>
<tr>
<td>BOD (mg L⁻¹)</td>
<td>3.91 ± 0.03⁺</td>
<td>25.65 ± 0.10⁻</td>
<td>12.40 ± 0.27⁻</td>
</tr>
<tr>
<td>SS (mg L⁻¹)</td>
<td>12.76 ± 0.04⁺</td>
<td>36.80 ± 0.01⁻</td>
<td>25.41 ± 0.61⁻</td>
</tr>
<tr>
<td>NH₃-N (mg L⁻¹)</td>
<td>0.89 ± 0.03⁺</td>
<td>7.53 ± 0.02⁻</td>
<td>5.45 ± 0.17⁻</td>
</tr>
<tr>
<td>NO₂-N (mg L⁻¹)</td>
<td>30.53 ± 2.41⁺</td>
<td>69.5 ± 0.52⁻</td>
<td>42.8 ± 0.55⁻</td>
</tr>
<tr>
<td>NO₃-N (mg L⁻¹)</td>
<td>0.096 ± 0.006⁺</td>
<td>0.342 ± 0.003⁻</td>
<td>0.18 ± 0.01⁻</td>
</tr>
</tbody>
</table>

⁺,⁻: homogeneous groups (Newman-Keuls test, a = 0.05).

Water pH

Water pH affects biological processes in aquatic systems and chemical processing of water post abstraction (Chatanga et al. 2019). The lowest pH (7.57) was found in S1 while the highest (8.17) belonged to S2 (Table 5). In most cases, the samples collected at downstream the river from the landfill had lower pH in comparison with those at upstream (Melnyk et al. 2014). Alkalinity of river water at landfill effluent discharge (S2) may be due to the effect of leachate migration to the surface water of Amsal River from both the closed- and currently- exploited landfill. Bhoyan (1979) and Mahmood et al. (1992) reported that industrial and municipal waste can significantly affected the water pH at the dumped site.

Dissolved oxygen (DO)

The dissolved oxygen data are valuable in determining the water quality criteria of an aquatic system. In the system where the rates of respiration and organic decomposition are high, the DO values usually remain lower than those systems where the rate of photosynthesis is high (Tripathi et al. 1991). As shown in Table 5, in the S2, located close to the landfill point discharge oxygen concentration descends to 1.79 mg L⁻¹, while the highest values belonged to S1 (5.34 mg L⁻¹). Increased microbial decomposition of large amount of organic matter at Site 2 also caused a significant depletion of DO.

Ammoniacal nitrogen (NH₃-N)

The lowest NH₃ (0.89) was found in the S1 while the highest (7.53) belonged to S2 (Table 5). The increased NH₃ in water indicates the existence of highly active pollutants coming from landfill leachate as well as the decomposition of organic matters. According to Fang et al. (2012), ammonia is one of the odorous substances which are emitted from the landfill sites. In addition, decomposition of proteins may be responsible for the release of ammonia from the solid waste (De et al. 2016). According to Gupta et al. (2015), increase in oxygen demand and eutrophication of the aquatic resources are the notable consequences of nitrogen pollution by ammoniacal nitrogen.

Suspended solids (SS)

The SS consists of mud, fine sand, and microorganisms caused by soil erosion and are carried into the body of water (Effendi 2003). A high value of 36.80 mg L⁻¹ was measured for S2, followed by S3 with 25.41 mg L⁻¹ and 9.67 mg L⁻¹ in S1 (Table 5). Location of sampling site can be the factor for high result of SS at S2 which is located at landfill effluent discharge. Indeed, the presence of SS can result in turbidity of water, reduced rate of phytoplankton photosynthesis and dropped water productivity (Nartey et al. 2012). Such conditions can reduce the supply of dissolved oxygen in water bodies (Effendi 2003).
Biochemical oxygen demand (BOD₃)
Biochemical oxygen demand (BOD) is the amount of oxygen, used by the microbes to decay carbon-based materials in water within five days period (APHA 2005). The Lower values of BOD were observed in the upper and lower parts of the river, i.e., S1 and S3 (3.91 and 12.40 mg L⁻¹ respectively). However, a high value of BOD (25.65 mg L⁻¹) was recorded at S2 suggesting that this site was rich in organic matter content discharged to the rivers by leachate landfill. Prasanna & Ranjan (2010) and Mishra et al. (2014) also reported that BOD₃ of water can be affected by organic content of the water body.

Nitrate (NO₃-N) and nitrite (NO₂-N)
The higher NO₃-N level was observed in S2 (7.53 mg L⁻¹) followed by 5.45 and 0.89 mg L⁻¹ at S3 and S1 respectively (Table 5). In the case of NO₂-N, the highest level was recorded in S2 (0.342 mg L⁻¹), whereas the lowest belonged to S3 and S1 (0.18 and 0.096 mg L⁻¹ respectively) (Table 5).
In the study area, the higher values of NO₃-N and NO₂-N at S2 may be due to leachate from the landfill site indicating that the studied river is exposed to a risk of the nitrate and nitrite pollution. Indeed, nitrogen is recorded at high levels in most landfill leachate studies with Robinson (1995) and Kjeldsen et al. (2002) both describing it as the dominant pollutant.

Estimation of RPI
Based on Table 2, water is classified as unpolluted for RPI values lower than 2.0; negligibly polluted when its values ranged between 2.0 and 3.0; moderately polluted when it is above 3.0 and less than 6.0. RPI values above 6.0 is classified as severely-polluted.
According to Table 6, the water quality of Amsal River was classified as severely polluted at S2, moderately polluted at S3 and negligibly polluted at S1. Indeed, at S2, discharged effluent from the landfill was clearly the point source of water pollution and caused higher pollution rate.

Table 6. Results of river pollution index (RPI) of studied sites.

<table>
<thead>
<tr>
<th></th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPI</td>
<td>2.5</td>
<td>8.25</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>Negligibly polluted</td>
<td>Severely polluted</td>
<td>Moderately polluted</td>
</tr>
</tbody>
</table>

Heavy metal concentration in sediment
The concentrations of lead and cadmium in the bed sediment samples are presented in Table 7. It was found that cadmium was the least concentrated heavy metal in all the sites sampled, consistent with results of Seshan et al. (2010) and Azizi et al. (2019). In One-Way ANOVA test, the concentrations of all metals showed significant differences among the sites (p < 0.05) (Table 7). The S2 showed maximum concentrations of all metals, due to landfill leaching into the river, hence, identified as hot spot. The mean lowest values of Cd and Pb were observed at S1, which can be explained by the fact that this site is far from the studied landfill compared to S2 and S3. The presence of lead in the water may be due to lead-acid batteries, plastics and rubber remnants, lead foils such as bottle closures, used motor oils and discarded electronic gadgets including televisions, electronic calculators and stereo (WHO 2004) where leachates from the waste dumpsites may find their way into the rivers. However, the highest Cd concentrations observed at S2 could be attributed to the discharge of contaminants including nickel and cadmium batteries used in domestic and urban activities, representing almost 50% of Cd in the urban solid waste (Segura-Muñoz et al. 2004). There are numerous reports on metal contamination in river sediments around the world. Comparing heavy metal concentrations in Amsal River (Table 7) revealed that the extent of Pb and Cd pollutions in the study area was higher than in some rivers (Banu et al. 2013; Hassan et al. 2015; Islam et al. 2015), while less than the others (Grosbois et al. 2001; Mohiuddin et al. 2011).

Assessment of sediment contamination
To assess the impacts of trace elements in sediments, the metal levels in Amsal River were compared with metal background concentrations obtained by Krauskopf & Bird (1995) followed by applying numerical sediment quality guidelines (SQGs) (MacDonald et al. 2000). Two consensus-based values were reported for each potential contaminant: (1) the threshold effect concentration (TEC), which is the concentration below which harmful effects are unlikely to be observed; and (2) the probable effects concentration (PEC), i.e., the concentration above which
harmful effects are likely to be appeared (Ahdy & Khaled 2009). As shown in Table 7, the average sediment metal levels from Amsal River are higher than the background concentrations. In addition, the mean concentrations of Pb and Cd in all sediment samples are evidently greater than TEC, suggesting that adverse biological effects could occasionally be observed. Besides, the mean level of Pb in all of the sediment samples exceed PEC, representing that adverse biologic effects could frequently occur.

Table 7. Mean concentrations of metals (µg g⁻¹) in bed sediment comparison with background values, selected rivers in the world and sediment quality guidelines (SQGs).

<table>
<thead>
<tr>
<th>Sites</th>
<th>Cd (µg g⁻¹)</th>
<th>Pb (µg g⁻¹)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>0.02±0.004</td>
<td>9.43±0.61</td>
<td>Present study</td>
</tr>
<tr>
<td>S2</td>
<td>5.10±0.22</td>
<td>405.6±21.6</td>
<td>Hassan et al. (2015)</td>
</tr>
<tr>
<td>S3</td>
<td>0.16±0.05</td>
<td>53.5±5.20</td>
<td>Islam et al. (2015)</td>
</tr>
<tr>
<td>Mean</td>
<td>1.76</td>
<td>156.20</td>
<td></td>
</tr>
<tr>
<td>Meghna River</td>
<td>0.23</td>
<td>9.47</td>
<td>Muhuddin et al. (2011)</td>
</tr>
<tr>
<td>Turag River</td>
<td>0.28</td>
<td>32.78</td>
<td>Krauskopf & Bird (1995)</td>
</tr>
<tr>
<td>Korotou River</td>
<td>1.20</td>
<td>58.0</td>
<td></td>
</tr>
<tr>
<td>Boriganga River</td>
<td>5.30</td>
<td>476.50</td>
<td></td>
</tr>
<tr>
<td>Upper Spokane River</td>
<td>6.90</td>
<td>390.0</td>
<td>MacDonald et al. (2000)</td>
</tr>
<tr>
<td>Background</td>
<td>0.2</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>SQGs</td>
<td>MacDonal d et al. (2000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEC</td>
<td>0.99</td>
<td>35.8</td>
<td></td>
</tr>
<tr>
<td>PEC</td>
<td>4.98</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation of heavy metal pollution
In Amsal River, the calculated values of Igeo (Table 8) indicated that, in the case of Pb, sediment quality ranges from unpolluted (Igeo<0) at S1, unpolluted to moderately-polluted (0< Igeo≤1) at S3 and heavily-polluted (3<Igeo<4) at S2. Igeo values of Cd (Igeo<0) at S1 and S3 indicated that these sites were unpolluted with this metal. In contrast, the Igeo value of Cd at S2 was above 3, suggesting that this site was heavily polluted. On the basis of the mean values of Igeo, the sediments were enriched with metals in the following order: Pb > Cd.

Table 8. Geo-accumulation Index (Igeo), Contamination Factor (CF) and Pollution Load index (PLI) values.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Igeo Pb</th>
<th>Igeo Cd</th>
<th>PLI</th>
<th>CF Pb</th>
<th>CF Cd</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>-1.68</td>
<td>-3.11</td>
<td>0.19</td>
<td>0.46</td>
<td>0.08</td>
</tr>
<tr>
<td>S2</td>
<td>3.75</td>
<td>3.50</td>
<td>18.50</td>
<td>20.14</td>
<td>17.02</td>
</tr>
<tr>
<td>S3</td>
<td>0.85</td>
<td>-1.52</td>
<td>1.20</td>
<td>2.67</td>
<td>0.54</td>
</tr>
<tr>
<td>Total mean</td>
<td>0.97</td>
<td>-1.04</td>
<td>6.63</td>
<td>7.75</td>
<td>5.88</td>
</tr>
</tbody>
</table>

On the other hand, both CF and PLI are widely used to evaluate the degree of heavy metal pollution in the sediments (Vural 2015). Table 8 presents CF values for heavy metals, recorded at different sampling sites. The mean CF values for metals in the studied area appeared in the following sequence Pb > Cd. The highest CF value was 20.14 for Pb at S2 which is categorized as a very high-contaminated. The CF values for Pb indicated low and moderate contaminations at S1 and S3, respectively. In the case of Cd, the highest CF value was 17.02 at S2 which is categorized as a very high-contaminated. The CF values for heavy metals were below 1 at other sites, suggesting that these elements in sampling sediments had low contamination. The maximum and minimum PLI were 0.19 and 18.50, respectively. Based on the PLI values, Amsal River should be classified as having no pollution (PLI < 1) in S1; moderate pollution (1 < PLI < 2) in S3 and extremely heavy pollution (3 < PLI) in S2. As a rule, S2 located close to landfill had the highest PLI values and therefore, exhibiting characteristics of baseline pollution.

CONCLUSION
The main environmental concern in this study is the effect of landfills leachate on the surface water quality. Results obtained in this study reveal that the quality of the surface water near the municipal landfill has been strongly affected when the effluent mixed with the river water. The physicochemical water analysis of the studied sites showed that, all measured parameters were important in site 2 (S2) compared to the others sites (S1 and S3), with the exception of DO. According to the river pollution index (RPI), surface water quality of Amsal River is unpolluted at S1, severely polluted at landfill effluent discharge S2 and moderately polluted at S3.
sediments, abundance of heavy metals was ranked as follows: Pb > Cd. However, all metal concentrations exceeded background values. The contamination factor (CF), pollution load index (PLI) and geoaccumulation index (Igeo) revealed that sediments were unpolluted to extremely polluted by heavy metals. Obtained results confirm that the leachates from the studied municipal landfill pose a potential source of the Amsal River pollution. Hence, the authors recommend that, the open landfill should be closed and treated to minimize the impact of these pollutants by application of different remedial action like phytoremediation and bioremediation in order to preserve quality of this ecosystem.

REFERENCES

چکیده
مکان‌های دفن زباله منبع احتمالی این به‌دست‌آمدهای متنوعی هستند که می‌توانند مشکلات بهداشتی انسانی و ایمنی بهداشتی ایجاد کنند. هدف این مطالعه ارزیابی آلودگی ایجاد شده توسط نشت مکان دفن زباله زیامانصوریا (شمال شرقی الجزیره) بر روی رسوبات و آب سطحی است. کیفیت آب توسط شاخص آلودگی رودخانه (RPI) ارزیابی گردید. ارزیابی این آلودگی به‌وسیله اجسام (Igeo) از شاخص‌های آلودگی مانند فاکتور آلودگی آلودگی و شاخص تجمع زمین ساختنی (PLI) شد. ایستگاه مطالعه 1 نشان داد که ایستگاه 1 غیر آلوده است (RPI = 2.5); ایستگاه 2 شدت آلودگی به‌وسیله اجسام آلودگی و PLI رود اصلی است (RPI = 8.25). در رسوبات ترکیب میکروگالن غلظت عصار سرب با 156.3 (RPI = 5.5) در نشان داد که ایستگاه 1 غیر آلوده است (RPI = 2.5). دیگر مکان‌های دفن زباله دارند. مقادیر Igeo (بیش از 6) مربوط به آلودگی تراکمی فیزیکی و آلودگی در ایستگاه 2 نشان‌دهنده آلودگی بیشترین دو عنصر در این ایستگاه بود. نتایج PLI نشان داد که همه ایستگاه‌ها به‌جز ایستگاه 1 آلودگی متوسط تا شدید داشتند.

Merek مسئول

Bibliographic information of this paper for citing:

Copyright © 2021