Length-weight relationship, condition factor and relative condition factor of *Alosa braschnikowi* and *A. caspia* in the southeast of the Caspian Sea (Goharbaran)

Hasan Fazli*, Gholamreza Daryanabard, Mehdi Naderi Jolodar, Hassan Mollaei, Hosein Taleshian, Faramarz Bagherzadeh

Caspian Sea Ecology Research Center (CSERC), Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEIO), Sari, Mazandaran, Iran

* Corresponding author’s E-mail: hn_fazli@yahoo.com; fazlihasan@gmail.com

ABSTRACT

The main objectives of the present study were to determine the species composition of Caspian shad, genus *Alosa* and to estimate the LWR, CF, and Kn of *A. braschnikowi* and *A. caspia* during different months in the southeastern coast of the Caspian Sea. Two fishing methods, small mesh size beach seine and gillnet were used from December 2013 through July 2014. *A. braschnikowi* and *A. caspia*, were distinguished in the southeastern part of the Caspian Sea (Goharbaran), consisting of 57.1% and 42.9% of the Alosa catch, respectively. The slopes (b values) of the length-weight regression were 3.241 and 2.844 which were significantly different from 3 (P<0.05), indicating positive and negative allometric growth, respectively. The average CF of *A. braschnikowi* and *A. caspia* were calculated as 0.72 ± 0.12 and 0.83 ± 0.13, respectively. The average CF for both species were significantly different among months (P<0.001). There was a significantly negative correlation between size classes and CF of *A. caspia*. The Kn was greater than 1 for *A. braschnikowi* and lower than 1 for *A. caspia* indicating good well-being of *A. braschnikowi* as opposed to *A. caspia* in the southeastern Caspian Sea.

Keywords: Shad, Length, Condition factor, Relative condition factor, Caspian Sea.

INTRODUCTION

Over the past three decades various factors, such as sea-level fluctuations, pollution (Salmanov 1999; Ivanov 2000; Nasrollahzadeh 2010) and the introduction of exotic species have changed significantly the environment of the largest inland water body in the world, the “Caspian Sea”. The new invasive species (*Ctenophora, Mnemiopsis leidyi*) which was first observed in November 1999 (Ivanov *et al*. 2000) has subsequently affected the distribution and abundance of plankton species (Ganjian *et al*. 2010; Roohi *et al*. 2010), kilka stocks (Karimzadeh 2010; Fazli *et al*. 2007, 2009) and communities, habitats and ecosystem functioning of the Caspian Sea (Pourang *et al*. 2016). The Clupeidae is one of the world’s most commercially-important families of fish. *Alosa* species belong to family Clupeidae and comprise seven genera and 31 species (Whitehead 1985). These species are widely distributed in the Caspian, Black and Mediterranean seas, and also the Atlantic Ocean. Five species of genus *Alosa* (Caspian herrings) have been reported in Iranian waters of the Caspian Sea, including Caspian marine shad *A. braschnikowi* (Borodin 1904), Caspian shad *A. caspia* (Eichwald, 1838), Caspian anadromous shad *A. kessleri* (Grimm 1887), shad *A. saposchnikowii* (Grimm 1887) and Agrakhan shad *A. sphaerocephala* (Berg 1913) (Abdoli & Naderi 2008; Abbasi 2017; Esmaeili *et al*. 2018). During the last century, genus *Alosa* has been a major item of the Caspian and herring fisheries in almost the entire coast of the Caspian Sea. In the years 1885-1963, the maximum catch of herrings was higher than 300000 metric tons and averaged 104000 metric tons (Malkin & Andrianova 2008), but during the last two decades, their annual catch declined sharply to less than 6000 metric tons in the Caspian Sea.
For example, in the years 1993–2012, the catch ranged from 144 to 932 (averaged 530) metric tons in Iran and ranged from 72 to 4710 (averaged 1220) metric tons in other neighboring countries of the Caspian Sea (data source: Fishstat Plus, FAO Fisheries Department, Fishery Information, Data and Statistic Unit; FISHSTAT Plus: Universal software for fishery statistical time series). Knowledge of length-weight relationship, condition factor, growth, and recruitment are important tools for the adequate management of any fish species (King 2007). The length-weight relationship (LWR) can give information on the stock condition, condition indices and several aspects of fish population dynamics (Bagenal & Tesch 1978; Gonçalves et al. 1997). The condition factor (CF) is used to compare the condition, fatness or well-being of the fish (Bagenal & Tesch 1978) and the relative condition factor (K_c) is influenced by many environmental and biological factors (Le Cren 1951).

Despite the commercial importance of Caspian shads, knowledge on the life history parameters of these fishes is limited to the spatiotemporal habitat preferences of Alosa (Haghi Vayghan et al. 2016), length-weight relationships (Ghotbi-Jokandan et al. 2015), length, weight, age and sexuality (Taghavi et al. 2016), feeding habits (Abbasi & Sabkara 2004; Abdollahpour et al. 2007; Afraei Bandpei et al. 2012; Jalili et al. 2013; Azizov et al. 2015) as well as biology and stocks (Malkin & Andrianova 2008). Therefore, the main objectives of the present study were to determine the species composition of genus Alosa and to estimate the LWR, CF, and K_c of A. braschnikowi and A. caspia in the southeastern coast of the Caspian Sea.

MATERIALS AND METHODS

The sampling area, Goharbaran is located beside the Amirabad port and Neka Power Plant in the southeastern part of the Caspian Sea. Two fishing methods, small mesh size beach seine (SBS) in depths ≤ 2 m and multi-mesh gill net (MGN) (30 m length and 4 m height, with 22, 26, 33, 40, 45 and 56 mm mesh sizes, knot to knot) in three depths 5, 7 and 10 m were used during December 2013 to July 2014. The total length (TL) was measured to the nearest 1 mm and total weight to the nearest 1 g. The length-weight relationship was derived by applying an exponential regression as the following equation:

$$W = aTL^b$$

where W is the total weight (g), TL, the total length (cm), and a and b are parameters to be estimated (Ricker 1975). Parameters estimation was conducted by least-squares linear regression on log-log transformed data:

$$\ln(W) = \ln(a) + b \times \ln(TL)$$

T-test for departure from isometry (b = 3) was carried out using the following formula (Pauly 1984):

$$t = \frac{s.d.\ln(TL)}{s.d.\ln(W)} \times \frac{|b - 3|}{\sqrt{1 - R^2}} \times \sqrt{n - 2}$$

where s.d.\ln (TL) and s.d.\ln (W) are standard deviations’ natural logarithm of the total length (cm) and weight, respectively; a and b are regression parameters and R^2 is correlation coefficient between length and weight and n is sample size.

The condition factor (CF) was calculated as the following equation (Froese 2006):

$$CF = \frac{W}{TL^3} \times 100$$

where W (g) is weight and TL (cm) is the total length.

The relative condition factor (K_c) compensates for changes in form or condition with an increase in length and was calculated using the following equation (Froese 2006):

$$K_c = \frac{W}{aTL^b}$$

where W is weight (g), TL is the total length (cm), and a and b are the exponential form of the intercept and slope, respectively, of the logarithmic length-weight equation. The Pearson correlation coefficient was calculated to investigate the relationship of K_c and CF length. The comparison between the average values for months was carried out through analysis of variance (ANOVA). The Tukey pairwise test for multiple comparisons was used to assess differences between the months (Zar 2010). Statistical analyses were performed using SPSS 18 and Excel 2013 software packages.

RESULTS

A total of 308 caught specimens belonged to two species of A. braschnikowi and A. caspia, consisting of 176 (57.1%) and 132 (42.9%) of the catch, respectively. The specimens of A. braschnikowi were caught during December 2013 and January-April 2014, while those of A. caspia in December 2013, May and July 2014 (Fig. 1).
The length frequency of the two species shows that the smallest specimen was caught by SBS (Figs. 2 - 3).

Fig. 1. Monthly species composition of *Alosa* in catches in the southeastern Caspian Sea.

Fig. 2. Length frequency of *Alosa braschnikowi* in two fishing methods (small mesh size beach seine and gill net) in the Southeast Caspian Sea.

Given the whole samples, the total length and weight of *A. braschnikowi* ranged from 51 to 440 mm and 1.0 to 736.0 g by averaged (± SD) 144.0 (± 65.9) mm and 44.5 (± 90.0) g, while in the case of *A. caspia*, it ranged from 31 to 220 mm and 0.3 to 87.7 g by averaged (± SD) 110.8 (± 38.0) mm and 14.8 (± 14.7) g, respectively.

Length-length relationships and the coefficient of determination (R^2) for *A. braschnikowi* was calculated as $W = 0.0038 \times FL^{3.241}$ ($R^2 = 0.989$, $n = 176$) while for *A. caspia* it was $W = 0.0119 \times FL^{2.844}$ ($R^2 = 0.98$, $n = 132$). The estimations of “b” were 3.241 and 2.844 which were significantly different from 3.0 (t-test; $t = 6.9$, $p < 0.001$ and $t = 4.4$, $p < 0.001$), indicating positive and negative allometric growth for the two species, respectively (Fig. 4).

The average C_F of *A. braschnikowi* was 0.72 ± 0.12. Monthly variations of C_F was significantly different ($F = 19.1$, $P < 0.001$; Table 1). The K_n was 1.10 ± 0.141 and a significant difference was found among months ($F = 4.0$, $P < 0.004$; Table 1). The highest values of C_F and K_n were 0.85 and 1.21 in February, respectively. The correlation between TL and C_F was not statistically significant ($R^2 = 0.36$, $P > 0.05$; Fig. 5). A perusal of the data on the K_n values showed that the parameter was higher than 1 in all size classes except the size class of 371-410 mm. In the size class of 211-230 mm, K_n was the highest (0.95).
Fig. 3. Length frequency of *Alosa caspia* in two fishing methods (small mesh size beach seine and gill net) in the Southeast Caspian Sea.

Fig. 4. Length-weight relationship of *Alosa braschnikowi* (A) and *Alosa caspia* (B) in the Southeast Caspian Sea.

Table 1. Monthly average condition factor (CF) and relative condition factor (Kn) of *Alosa braschnikowi* in the Southeast Caspian Sea.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Month (year)</th>
<th>n</th>
<th>Mean</th>
<th>S.D.</th>
<th>Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>CF</td>
<td>December (2013)</td>
<td>14</td>
<td>0.82</td>
<td>0.14</td>
<td>0.54-1.02</td>
</tr>
<tr>
<td></td>
<td>January (2014)</td>
<td>115</td>
<td>0.67</td>
<td>0.06</td>
<td>0.52-0.87</td>
</tr>
<tr>
<td></td>
<td>February (2014)</td>
<td>5</td>
<td>0.85</td>
<td>0.16</td>
<td>0.70-1.03</td>
</tr>
<tr>
<td></td>
<td>March (2014)</td>
<td>36</td>
<td>0.81</td>
<td>0.14</td>
<td>0.57-1.17</td>
</tr>
<tr>
<td></td>
<td>April (2014)</td>
<td>5</td>
<td>0.76</td>
<td>0.12</td>
<td>0.64-0.93</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>175</td>
<td>0.72</td>
<td>0.12</td>
<td>0.52-1.17</td>
</tr>
<tr>
<td>Kn</td>
<td>December (2013)</td>
<td>14</td>
<td>1.15</td>
<td>0.15</td>
<td>0.84-1.37</td>
</tr>
<tr>
<td></td>
<td>January (2014)</td>
<td>115</td>
<td>1.07</td>
<td>0.10</td>
<td>0.51-1.38</td>
</tr>
<tr>
<td></td>
<td>February (2014)</td>
<td>5</td>
<td>1.21</td>
<td>0.21</td>
<td>0.94-1.47</td>
</tr>
<tr>
<td></td>
<td>March (2014)</td>
<td>36</td>
<td>1.15</td>
<td>0.18</td>
<td>0.93-1.90</td>
</tr>
<tr>
<td></td>
<td>April (2014)</td>
<td>5</td>
<td>1.04</td>
<td>0.15</td>
<td>0.88-1.26</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>175</td>
<td>1.10</td>
<td>0.14</td>
<td>0.51-1.90</td>
</tr>
</tbody>
</table>

Fig. 5. Variation of mean condition factor (CF) and relative condition factor (Kn) of *Alosa braschnikowi* in size classes in the southeastern Caspian Sea.
Table 2. Monthly average condition factor (CF) and relative condition factor (Kn) of Alosa caspia in the Caspian Sea.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Month (year)</th>
<th>n</th>
<th>Mean</th>
<th>S.D.</th>
<th>Min-Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>December (2013)</td>
<td>44</td>
<td>0.78<sup>a</sup></td>
<td>0.111</td>
<td>0.40-1.07</td>
</tr>
<tr>
<td></td>
<td>May (2014)</td>
<td>18</td>
<td>0.80<sup>c</sup></td>
<td>0.049</td>
<td>0.71-0.88</td>
</tr>
<tr>
<td></td>
<td>July (2014)</td>
<td>70</td>
<td>0.88<sup>c</sup></td>
<td>0.132</td>
<td>0.60-1.30</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>132</td>
<td>0.83</td>
<td>0.129</td>
<td>0.40-1.30</td>
</tr>
<tr>
<td>Kn</td>
<td>December (2013)</td>
<td>44</td>
<td>0.81<sup>c</sup></td>
<td>0.127</td>
<td>0.44-1.19</td>
</tr>
<tr>
<td></td>
<td>May (2014)</td>
<td>18</td>
<td>0.80<sup>c</sup></td>
<td>0.048</td>
<td>0.72-0.88</td>
</tr>
<tr>
<td></td>
<td>July (2014)</td>
<td>70</td>
<td>0.90<sup>c</sup></td>
<td>0.124</td>
<td>0.65-1.35</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>132</td>
<td>0.87</td>
<td>0.124</td>
<td>0.44-1.35</td>
</tr>
</tbody>
</table>

Fig. 6. Variation of mean condition factor (CF) and relative condition factor (Kn) of Alosa caspia in size classes in the Caspian Sea.

DISCUSSION
In the last century, genus Alosa has been a major item of the Caspian and herring fisheries in almost the entire coast of the Caspian Sea. Five species of genus Alosa have been reported in the Iranian waters of the Caspian Sea including A. braschnikowi, A. caspia, A. kessleri, A. saposchnikowii and A. sphaerocephala (Abdoli & Naderi 2008; Abbasi 2017; Esmaeili et al. 2018). However, in the present study, only two species A. braschnikowi and A. caspia were found in the south-eastern part of the Caspian Sea (Goharbaran) and the slope (b) of the length-weight relationships for the two species were within the expected range of 2.5–3.5 (Froese 2006), i.e., 2.844 and 3.241 for A. caspia and A. braschnikowi, respectively. In contrast, Taghavi Jelodar et al. (2016) and Ghotbi-Jokandan et al. (2015) reported lower b values for A. braschnikowi (2.93 and 3.10 in the southern Caspian Sea, respectively). In other study, Taghavi Jelodar et al. (2016) and Patimar et al. (2011) reported lower values (2.385, 2.626 and 2.796, in the southern, south middle and south-western Caspian, respectively), while in the case of A. caspia, higher values (2.98 and 3.272, in the southern and southeastern Caspian Sea) were reported (Patimar et al. 2011; Ghotbi-Jokandan et al. 2015) (Table 3). According to Bagenal and Tesh (1978) and Froese (2006), the sampling gear, geographic location and the associated environmental conditions such as water temperature, which is the determining factor of feeding capacity, season, stomach fullness, disease and parasite loads can affect the value of b, hence the changes in this parameter. In the present study, the highest mean values of CF were 0.85 and 0.88 in February and July, respectively. According to Kumolu & Ndimele (2010), the condition factor reflects information on the physiological status of fish in relation to welfare, and higher values indicate favorable environmental conditions (Blackwell et al. 2000). Also, there was a significantly negative correlation between size classes and CF in A. caspia (Fig. 6). CF can be influenced by season, sex, type of food, age of fish, reserved fat and environmental conditions (Bagenal and Tesh 1978; Abowei 2009). The K_s indicates the suitability of the environment for fish growth and the general well-being of the fish. A K_s > 1, indicates good well-being of the fish, while a value < 1 reflects poor condition. In the present study, the K_s was greater than 1 for A. braschnikowi indicated that the well-being of the fish was good, while lower than 1 for A. caspia exhibited its low well-being in the Southeast Caspian Sea. Also, a seasonal/monthly variation of K_s can be influenced by maturity, gonad development, feeding activity and several other factors (Le Cren 1951; Bagenal & Tesh 1978; Simon et al. 2012). A. braschnikowi feed mainly on small clupeids, gobies, and atherinids (Vetchanin 1984; Whitehead 1985; Afraei...
Bandpei et al. 2012). Vetchanin (1984) reported that the diet of *A. braschnikowi* in the Southeast Caspian Sea was composed of 85% anchovy (*Clupeonella engrauliformis*) as well as some gobies (genus *Neogobius*) and shrimps. However, in the years 2003-2004 the diet significantly shifted to atherinid fish (*Atherina caspia*) (Afraei Bandpei et al. 2012). In contrast, *A. caspia* in the southern Caspian Sea feed mainly on zooplankton (95.0%) and phytoplankton (*Rhizosolenia* and *Spirogyra*) (4.5%) (Abassi & Sabkara 2004; Abdollahpour et al. 2007).

Table 3. The length-weight relationships in *Alosa braschnikowi* and *A. caspia* from different locations.

<table>
<thead>
<tr>
<th>Study area</th>
<th>N</th>
<th>TL (cm) Min-Max</th>
<th>W (g) Min-Max</th>
<th>b</th>
<th>r²</th>
<th>Author (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern Caspian Sea, Iran</td>
<td>147</td>
<td>17.4-47.0</td>
<td>37-1085</td>
<td>3.10</td>
<td>0.977</td>
<td>Ghobhi-Jokandan et al. 2015</td>
</tr>
<tr>
<td>Southern Caspian Sea, Iran</td>
<td>54</td>
<td>21.0-42.5</td>
<td>91.3-700.8</td>
<td>2.93</td>
<td>0.98</td>
<td>Taghavi Jelodar et al. 2016</td>
</tr>
<tr>
<td>Southeastern Caspian, Iran</td>
<td>176</td>
<td>5.1-44.0</td>
<td>1.0–736.0</td>
<td>3.241</td>
<td>0.989</td>
<td>Present study</td>
</tr>
<tr>
<td>Alosa caspia</td>
<td>Southern Caspian Sea, Iran</td>
<td>113</td>
<td>11.6-27.6</td>
<td>11-164</td>
<td>2.98</td>
<td>0.97</td>
</tr>
<tr>
<td>Southern Caspian Sea, Iran</td>
<td>60</td>
<td>23.0-31.0</td>
<td>94.9-238.7</td>
<td>2.385</td>
<td>0.946</td>
<td>Taghavi Jelodar et al. 2016</td>
</tr>
<tr>
<td>Southeastern Caspian, Iran</td>
<td>159</td>
<td>?? – 28.3</td>
<td>?? – 171.8</td>
<td>3.272</td>
<td>0.872</td>
<td>Patimar et al. 2011</td>
</tr>
<tr>
<td>South middle Caspian, Iran</td>
<td>97</td>
<td>?? – 27.7</td>
<td>?? – 145.7</td>
<td>2.626</td>
<td>0.777</td>
<td>Patimar et al. 2011</td>
</tr>
<tr>
<td>Southwestern Caspian, Iran</td>
<td>145</td>
<td>?? – 26.9</td>
<td>?? – 138.3</td>
<td>2.796</td>
<td>0.933</td>
<td>Patimar et al. 2011</td>
</tr>
<tr>
<td>Southeastern Caspian, Iran</td>
<td>132</td>
<td>3.1-22.0</td>
<td>0.3-87.7</td>
<td>2.844</td>
<td>0.980</td>
<td>Present study</td>
</tr>
</tbody>
</table>

Over the past three decades, the new invasive species (*Ctenophora, Mnemiopsis leidyi*) has affected the whole ecosystem of the Caspian Sea (Roohi et al. 2010; Pourang et al. 2016). It feeds aggressively on zooplankton (Mutlu 1999) which has significantly reduced the abundance and distribution of zooplankton species and their predators, especially two main pelagic fish stocks of kilka, *C. engrauliformis* and *C. grimmi* (Fazli et al. 2007, 2009; Roohi et al. 2010; Pourang et al. 2016). Afraei Bandpei et al. (2012) concluded that *A. braschnikowi* displays an opportunistic feeding behavior and feeds on a variety of prey items as well as a wider range of food items and is adapted to the conditions, resulting in its good well-being. Due to the food competition of *A. caspia* with two species of kilka and especially *M. leidyi*, the well-being of the fish was not good in the southeastern Caspian Sea.

ACKNOWLEDGMENT

This work was funded by Iran Water and Power Resources Development Co. and Iranian Fisheries Research Organ-ization/IFRO which supported the Project Number: 4-76-12-95102. We wish to thank Dr. Salmanmahiny for improving the quality of the manuscript.

REFERENCES

Ivanov, PI 2000, Biological resources of the Caspian Sea. KaspNIRKH, Astrakhan.

Pauly, D 1984, Fish population dynamics in tropical waters: A manual for use with programmable calculators. ICLARM, Manila.

Roohi, A; Kideys, AE; Sajjadi, A; Hashemian, A; Pourgholam, R; Fazli, H; Ganjjian Khanari, A & Eker-Develi, E 2010, Changes in biodiversity of phytoplankton, zooplankton, fishes and macrobenthos in the Southern Caspian Sea after the invasion of the ctenophore *Mnemiopsis Leidyi*. *Biological Invasions*, 12: 2343–2361.
Simon, KD, Bakar, Y, Mazlan, AG, Zaidi, CC, Samat, A, Arshad, A, Temple, SE & Brown-Peterson, NJ 2012,
Aspects of the reproductive biology of two archer fishes Toxotes chatareus (Hamilton 1822) and Toxotes jaculatrix (Pallas1767). Environmental Biology of Fishes, 93: 491–503.
Caspian Sea coast (Mazandaran province). Aquatic Physiology and Biotechnology, 4(2): 1-17 (In Farsi).
Vetchanin, VI 1984, Feeding of the Astrakhan shad, Alosa brashnikovi (Clupeidae), in the southeastern Caspian
Annotated and Illustrated Catalogue of the Herrings, Sardines, Pilchards, Sprats, Anchovies, and
روابطه بین طول - وزن، ضریب چاقی و ضریب چاقی نسبی در سواحل جنوب شرقی دریای خزر (گهرباران)

Alosa braschnikowi و Alosa caspia

حسن فضلی*، غلامرضا داریانبرد، مهدی نادری جلودار، حسن ملائی، حسین طالشیان، فرامرز باقرزاده

پژوهشکده اکولوژی دریای خزر، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات و ترویج کشاورزی ساری، ایران

چکیده

هدف اصلی این مطالعه تعیین ترکیب گونه‌ای شگ ماهیان خزر جنس Alosa braschnikowi و Alosa caspia در سواحل جنوب شرقی دریای خزر (گهرباران) توسط راهان‌سازی جادوگری و دام‌گوشگیری در ماه‌های مختلف از دو ماه آذر ۱۳۹۲ تا بهمن ۱۳۹۹ است. دو گونه Alosa braschnikowi و A. caspia با فرآیند نسبی به ترتیب ۸/۹ و ۴/۹ % از جنس Alosa مشاهده شدند. ضریب چاقی گونه‌های A. braschnikowi و A. caspia به ترتیب ۴/۰ ± ۷/۲ و ۴/۰ ± ۴/۹ محاسبه شد. ضریب چاقی هر دو گونه در سواحل جنوب شرقی دریای خزر با مقدار ۰/۰۳۵ و ۰/۰۳۲ با احتمالات بسیاری بین ۰/۰۵ و ۰/۰۱ معنی‌دار است. ضریب چاقی نسبی گونه‌ها باید بین ۴ و ۴/۹ باشد که بیانگر وضعیت مطلوب و نامطلوب سلامت دو گونه در سواحل جنوب شرقی دریای خزر می‌باشد.

* پژوهشکده اکولوژی دریای خزر

Bibliographic information of this paper for citing:

Fazli, H, Daryanabard, G, Naderi Jolodar, M, Mollaei, H, Taleshian, H, Bagherzadeh, F 2021, Length-weight relationship, condition factor and relative condition factor of Alosa braschnikowi and A. caspia in the southeast of the Caspian Sea (Goharbaran), Caspian Journal of Environmental Sciences, 19: 105-113

Copyright © 2021

Caspian J. Environ. Sci. Vol. 19 No. 1 pp. 105–113
DOI: Received: May 3, 2020 Accepted: Oct. 17, 2020
©Copyright by University of Guilan, Printed in I.R. Iran