Potential of *Cyperus alternifolius*, *Amaranthus retroflexus*, *Closia cristata* and *Bambusa vulgaris* to phytoremediate emerging contaminants and phytodesalination; Insight to floating beds technology

Reza Ameri Siahouei¹, Mojgan Zaeimdar¹, Roxana Moogouei¹*, Seyed Ali Jozi²

1. Department of Environmental Management, North Tehran Branch, Islamic Azad University, Tehran, Iran
2. Department of Environment, North Tehran Branch, Islamic Azad University, Tehran, Iran

* Corresponding author’s E-mail: r_moogouei@iau-tb.ac.ir

ABSTRACT

The main aim of this study is to consider the potential of different aquatic and terrestrial plants (*Cyperus alternifolius*, *Amaranthus retroflexus*, *Closia cristata* and *Bambusa vulgaris*) for phytoremediation of pollutants and phytodesalination through floating bed system. In this study, when *Cyperus alternifolius* plants were exposed to atrazine (20 mg L⁻¹), OPC-LD (20 mg L⁻¹), OPC-LD (50 mg L⁻¹), fluorne (3.5 mg L⁻¹), and 1,4 Dioxane (25 mg L⁻¹), in a mesocosm treatment floating bed system, the phytoremediation efficiencies were 91.28 ± 6.35%, 82.33 ± 2.51%, 75.67 ± 3.05%, 62.28 ± 5.77% and 42.29 ± 2.27% respectively. When *Amaranthus retroflexus* plants were exposed to metformin (20 and 50 mg L⁻¹) and OCP-LD (20 and 50 mg L⁻¹), 63 ± 5.24 %, 58.4 ± 2.11%, 38 ± 1.73 %, and 29 ± 0.1 % of the pollutants were removed. In the case of *Closia cristata*, the most efficiency belonged to metformin with a concentration of 50 mg L⁻¹. The results showed that in water containing NaCl in a range of 1000 to 2000 mg L⁻¹, *Bambusa vulgaris* with an efficiency of about 32.62 ± 4.65 % is a good candidate for phytodesalination. Consequently, *C. alternifolius*, a fast-growing plant with a good ecological stability in polluted water, can absorb pollutants and remains healthy after the treatment period. It is a good candidate for phytoremediation in vegetated floating beds.

Keywords: Phytoremediation; Emerging Contaminant; Water pollution, *Cyperus alternifolius*.

INTRODUCTION

Inadequate sanitation provides pollution problems in developing countries (Starkl et al. 2018). Rivers are one of the main sources of drinking water all of the worlds and can be polluted by the human and industry activities. Rapid industrialization and lack of infrastructures in water treatment in developing countries have produced the point and nonpoint source pollutions (Gunawardena et al. 2018). Moreover, untreated wastewaters are commonly used for irrigation of crops in these countries. Wastewater irrigation has a potential risk for the health of human and ecosystem. There is a lack of knowledge regarding this kind of irrigation among farmers especially in aforementioned countries (Gunawardena et al. 2018). Moreover, water security, increasing crops yield and decreasing water costs are the main reasons for this unsustainable agriculture. Water, energy and cost-intensive technologies that usually are centralized, are ineffective in solving the complexity of water and wastewater treatment problems in developing countries (Zhang et al. 2014). Among different technologies for wastewater treatment, ecological technologies have gained more attention. Energy consumption, remediation efficiency, global warming potential, and wastewater treatment fees are important indicators that have been used for technology evaluation and selection (Su et al. 2019). Constructed floating wetlands (CFW), also called planted floating system beds, ecological floating beds, artificial floating islands and vegetated floating islands (Pavlineri, et al. 2017) which employ root system of vegetation by growing hydropponically and consequently, perform...
pollutant uptake from the water (Pavlineri et al. 2017). These floating systems have been widely used for the environmental remediation of eutrophic water in a cost-effective manner. This technology can be used effectively for the restoration of ecosystems and can remediate waters polluted by a variety of contaminants. In terms of engineering performance, ecological floating bed technology is stable, effective and reliable during the treatment period (Su et al. 2019). In indicators like global warming potential and eutrophication potential, this technology has shown superior performance. Energy consumption of constructed wetlands which is estimated between 0-0.25 kWh/m3 (compared to 0.04 in stabilization ponds, 0.04 in slow rate infiltration, 0 in subsurface infiltration; 0 in overland flow; 0.31 in A$_2$/O; 0.2 -0.3 in oxidation dishes; 0.28 in anoxic-oxic; 0.22-0.82 in conventional activated sludge; 4-23 in extended aeration; 0.23 – 0.31 sequence batch reactor; 0.2-0.6 in low-rate trickling filter; 0.5-1 in high-rate trickling filter and 0 in up-flow anaerobic sludge blanket reactor) is among low energy consumption technologies (Su et al. 2019). This technology can widely be applied to rural wastewater treatment, since it can integrate human society with the environment for improving the health of both human and the environment (Azizi et al. 2019). Emerging contaminants including industrial chemicals, pharmaceuticals, food additives, hormones, pesticides and herbicides are entered into the water by manufactural plants and agricultural runoff (Khalili Tanha et al. 2020). Atrazine 2-chloro-4-ethylamino-6-isopropylamino-s-triazine) is used worldwide as atrazine herbicide for control of weeds in crop farmlands. It usually enters into the environment from agricultural production areas (Cao et al. 2018). Atrazine has long term adverse impact on environmental properties and is considered as an endocrine disruptor. It provides biotoxicity effects on human, animals, plants, and microorganisms (Lasserre et al. 2009). Removal of atrazine from agricultural runoff is necessary for keeping the ecosystem healthy and safe. In our previous study for identifying the efficiency of phytoremediation in the removal of atrazine from polluted water, C. alternifolius was used as floating beds in mesocosm-constructed wetland. Our findings revealed that when C. alternifolius were exposed to 20 mg L$^{-1}$ atrazine, after a period of 20 days, 1.75 mg L$^{-1}$ of this pollutant was remained in the solution (Asadi & Moogouei 2017). Dioxins, released to the environment as byproducts of chlorine-based compounds, are considered as a most toxic chemicals in the environment (Kanan & Samara 2018). Dioxane can be accumulated in foods like eggs, dairy products, animal fats, and fish, hence finally in fatty tissues of fish and human. Because of persistence and toxicity, it exhibits a significant health risk to human. Dioxane has different sources in the environment. Industrial sources include pulp and paper, metal and chemical industries and also power boilers. Another important sources of emission of dioxane to the environment are diesel vehicles, coal-fired utilities, wood burning, and cement forges. Swedge sludge, municipal waste, medical waste, and hazardous waste through the incineration processes also release dioxane to the environment. Biochemical and photolytic processes, landfill burning and forest fire are also among reservoir sources of releasing dioxane to the environment. In our previous study, after exposure of C. alternifolius in floating beds to 25 mg L$^{-1}$ 1-4 dioxane solution, 49.29% of dioxine was remediated after a period of 14 days and the plant was healthy after the treatment period (Bavarsad et al. 2018). Pharmaceutical products are stable chemicals and sometimes incompletely removed in wastewater treatments of plants (Oosterhuis et al. 2013). Ecotoxicity and residue potential of pharmaceutical products especially in rivers and marine ecosystems created public concerns in recent decades. They present in the environment in trace levels from ng L$^{-1}$ to µg L$^{-1}$. However, environmental distribution and accumulation of these products have not been widely investigated. Pharmaceutical products like OPC-LD and metformin widely prescribe and use all over the world (Cui & Schröder 2016). In our previous study, when A. retroflexus and Closia. cristata were used in floating beds for phytoremediation of metformin, the remediation efficiencies reached 63% and 58.1% respectively (Moogouei et al. 2018). The metabolization of metformin in the human body is minor, so excreta unchanged in the urine (Oosterhuis et al. 2013). Metformin concentrations are reported in a range of 1.2-118 µg L$^{-1}$ in wastewater treatment plants and 0.06-3.1 µg L$^{-1}$ in surface water (Ghoshdastidar et al. 2015). When this plant was used for removal of OPC-LD, in 20 and 50 mg L$^{-1}$, the efficiencies of remediation were 82.33% and 75.67% respectively. Fluorine is a trace element related to human health. Excessive intake of fluorine causes damage to human soft tissues, bones, and teeth. Fluorine appears widely in the environment in the form of fluorite, cryolite, and apatite (Lu et al. 2016). Discharge of water, waste gases, and industrial wastes are among the main sources of fluorine pollution of the environment. In research on the potential of phytoremediation for fluorine removal in mesocosm constructed wetland, 62.28% of fluorine was remediated from solution by C. alternifolius (Alijani et al.
Vegetative bioremediation of Na is a biological approach for phytodesalination. In soil pollution, under nonleaching condition, phytoremediation of salt is the only existing process for Na remediation (Rabhi et al. 2015). The area of lands degraded by salts, has been reported almost 2000 ha per day (Qadir et al. 2014). The main aim of the present study was to measure potential of different aquatic and terrestrial plants (C. alternifolius, A. retroflexus, C. cristata, B. vulgaris) in phytoremediation of atrazine, OPC-LD, fluorine and 1-4 Dioxane in floating beds as well as in phytodesalination.

MATERIALS AND METHODS

Plants Material

Based on literature, different plants were selected for phytoremediation in different geographical areas in Iran. These plants species should be able to grow in different environmental conditions. Moreover, local communities and companies should perform seed generation and growing plantlets. In this study, different plants species were used in two different conditions. At first, seeds were placed in floating beds and were fed by Hoagland medium. Thereafter, adult plants were transferred to mesocosm-constructed wetland (Moogouei et al. 2011). Seeds were generated on the rafts then two-month hydroponically plants were transferred to the wetland for absorbing pollutants.

Design of mesocosm-floating beds

Rafts with a total surface area of 0.25 m² (50 cm × 50 cm) were used. 9 holes (3 cm in diameter) were designed in each polystyrene rafts. The thickness of the rafts was 2 cm, so the depth of the holes was 2 cm. The bottom surface of each raft was covered by mesh. Various-size seeds were settled on different size meshes. Rafts were placed on Hoagland medium and seeds were generated in each hole (Borghei et al. 2011). For increasing the stability of plantlets, the bottom of each hole was fully covered by seeds. In the case of transferring plant to the pilot, it was purchased, then anchored in wire rafts. Experiments were performed in room temperature (Average 25 °C) and natural light.

In this study, C. alternifolius, A. retroflexus and C. cristata were generated in floating beds for a period of 4 weeks. Salicornia persica, Phragmites australis, and B. vulgaris were transferred to the system from Neyzar district, Qom Province, Iran. Neyzar district is a rural area of Salafchegan city in Qom Province (34° 28′ 42″ N, 50° 27′ 25″ E). The treatment period and solution concentrations were presented in Table 1.

<table>
<thead>
<tr>
<th>Plant</th>
<th>Efficiency (%)</th>
<th>Pollutant</th>
<th>Initial concentration (mg L⁻¹)</th>
<th>pH</th>
<th>Time (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. alternifolius</td>
<td>91.28</td>
<td>Atrazine</td>
<td>20</td>
<td>5.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>42.29</td>
<td>1-4 Dioxane</td>
<td>25</td>
<td>5.5</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>82.33</td>
<td>OPC-LD</td>
<td>20</td>
<td>5.5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>75.67</td>
<td>OPC-LD</td>
<td>50</td>
<td>5.5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>62.28</td>
<td>Fluorine</td>
<td>3.5</td>
<td>5.5</td>
<td>14</td>
</tr>
<tr>
<td>A. retroflexus</td>
<td>63</td>
<td>Metformin</td>
<td>20</td>
<td>5.5</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>58.4</td>
<td>Metformin</td>
<td>50</td>
<td>5.5</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>OPC-LD</td>
<td>20</td>
<td>5.5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>OPC-LD</td>
<td>50</td>
<td>5.5</td>
<td>20</td>
</tr>
<tr>
<td>C. cristata</td>
<td>14.67</td>
<td>OPC-LD</td>
<td>20</td>
<td>5.5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>OPC-LD</td>
<td>50</td>
<td>5.5</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>Metformin</td>
<td>20</td>
<td>5.5</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>58.1</td>
<td>Metformin</td>
<td>50</td>
<td>5.5</td>
<td>14</td>
</tr>
</tbody>
</table>

Analysis of the water samples

After the treatment period, water samples in three replicates were obtained from each tray. Control samples were free of pollutant. The metformin, OPC-LD, and atrazine concentrations were assayed using High-Performance Liquid Chromatography) HPLC- Varian ProStar 210, Darmstadt, Germany. SPADNS spectrophotometry was used in phytoremediation of atrazine, OPC-LD, fluorine and 1-4 Dioxane in floating beds as well as in phytodesalination.
used to assay fluorine concentrations in water samples. 1-4 dioxane was determined through mass spectrophotometry. During the treatment period, the pH of the solutions was adjusted to 5.5 and was measured with a portable pH meter. Salinity was measured using portable salinity tester.

Calculating efficiencies of remediation
Remediation efficiency (R%) was calculated using the following equation (Wang et al. 2018).

\[E = \left(\frac{C_0 - C_1}{C_0} \right) \times 100 \]

Statistical Analysis
In this study, all the experiments were performed in triplicates and one sample was free of pollutant as control. Data were analyzed using Statistical Analysis System Origin 8 software package) OriginLab. Analysis of variance was applied to consider significance differences and Duncan test was used at p<0.05 to consider the mean comparison between data.

RESULTS

Phytoremediation of atrazine, 1-4 Dioxane, OPC-LD, and metformin from solutions
Data presented in Table 1 describes a mesocosm-field experiment with the time duration of treatment. Atrazine, 1-4 Dioxane, OPC-LD, and metformin are among common consuming chemicals and have anthropogenic impacts on the environment. In a period of less than 20 days, the main parts of these chemicals were removed from the water.

Phytodesalination of wastewater by C. alternifolius, S. persica, P.australis, and B. vulgaris
As shown in Table 2, the high NaCl concentrations in water were removed by C. alternifolius, S. persica, P.australis, and B. vulgaris. This range of salinity is usually more than freshwater ecosystems that were contaminated by salts. The periods of desalination were presented in Table 2.

Emerging contaminants and fluorine remediation efficiencies
As shown in Fig. 1, the most efficiency was obtained in the case of C. alternifolius when exposure to atrazine solution. C. alternifolius exhibited more potential for phytoremediation than A. retroflexus and C. cristata.

Phytodesalination efficiencies of plants
Fig. 2 depicts that C. alternifolius with the most remediation efficiency for these emerging contaminants did not absorb any NaCl. Phytodesalination efficiencies of C. alternifolius, S. persica, P.australis and B. vulgaris in different salinity condition were illustrated in Fig. 2. The experiments were carried out in 1 g L⁻¹ NaCl solution as well as 1 and 2 g L⁻¹ NaCl and KNO₃.
Fig. 1. Remediation rate (%) of water contaminated with atrazine (20 mg L⁻¹), 1-4 Dioxane (25 mg L⁻¹), OPC-LD (20 mg L⁻¹) and fluorine (3.5 mg L⁻¹). All the data are means with three replicates ± SD. The significant level was considered as p<0.05.

Fig. 2. Remediation rate (%) of water contaminated with high concentrations of NaCl (1 g L⁻¹ NaCl as well as 1 and 2 g L⁻¹ NaCl and KNO₃). All the data are means of three replicates ± SD. P<0.05 data differences are significant.

Table 2. Experimental condition for phytodesalination studies and plant efficiencies.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Efficiency (%)</th>
<th>plant species</th>
<th>Initial concentration (mgL⁻¹)</th>
<th>Time (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>0</td>
<td>C. alternifolius</td>
<td>1000</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>25.33</td>
<td>S. persica</td>
<td>1000</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>19.12</td>
<td>P. australis</td>
<td>1000</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>32.51</td>
<td>B. vulgaris</td>
<td>1000</td>
<td>14</td>
</tr>
<tr>
<td>NaCl & KNO₃</td>
<td>16.73</td>
<td>P. australis</td>
<td>2000</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>32.62</td>
<td>B. vulgaris</td>
<td>2000</td>
<td>14</td>
</tr>
</tbody>
</table>

DISCUSSION
Floating beds as a naturally practical innovation, lately used to remove a variety of pollutants from the environment. When C. alternifolius was exposed to atrazine (20 mg L⁻¹), OPC-LD (20 mg L⁻¹), OPC-LD (50 mg L⁻¹), fluoride (3.5 mg L⁻¹), and 1-4 Dioxane solution (25 mg L⁻¹), the phytoremediation efficiencies were 91.28 ± 6.35%, 82.33% ± 2.51, 75.76 ± 3.05%, 62.28 ± 5.77 % and 42.29 ± 2.27% respectively. Potential of this plant for phytodesalination was zero. So, in the wastewaters, rivers, or other water bodies with no salinity, this species could be a potential candidate for designing and operating floating beds especially in agricultural areas with a high level of atrazine pollution in water. Tang et al. (2019) reported that the removal efficiency of C. alternifolius in a plant system for chlorpyrifos (a pesticide) at 50 - 500 μg L⁻¹ was 94% - 98%. In the present study, when A. retroflexus was exposed to metformin (20 and 50 mg L⁻¹) and OCP-LD (20 and 50 mg L⁻¹), 63 ± 5.24 %, 58.4 ± 2.11%, 38 ± 1.73 %, and 29 ± 01 % of pollutants were removed from the solutions respectively. Potential of this species for phytoremediation of metformin was higher than OCP-LD. By elevating in the concentration of these pharmaceuticals, the potential of the plant for phytoremediation was decreased. In the case of C. cristata, the most efficiency was found against metformin at the concentration of 50 mg L⁻¹. In this study, 91.28% of atrazine (20 mg L⁻¹) was removed by C. alternifolius during 16 days. Cao et al. (2018) pointed out that phytostabilization of atrazine in soil may be one of the defense mechanisms of plants to pollution stress. However, this pollutant can be removed from the environment instead of stabilizing in the soil. In other words, the pollutants can be eliminated from the environment using floating beds, instead of stabilizing them in the soil. Cao et al. (2018) reported that when the atrazine concentration elevate from 0 to 30 mg L⁻¹, dissolved organic matters incorporate with atrazine and can produce strong bands. Phytoextraction as the mechanism employed in the present study, helps the soil
and water environment to be remediated. In wastewaters with NaCl in a range from 1000 to 2000 mg L\(^{-1}\), \textit{R. vulgaris} with an efficiency of about 32.62 ± 4.65 % is a good candidate. In the study carried out by Robhi \textit{et al.} (2015), \textit{Suaeda salsa} absorbed 52.4% of soluble sodium from the soil. In addition, phytodesalination yield for \textit{Sesuvium portulacastrum} was 26.0%. Besides, \textit{Heliotropium curassavicum} reduced salinity by 26.5%.

The efficiency of phytodesalination by \textit{Suaeda maritima} was 71.4%. Sodium adsorption capacity by \textit{Suaeda maritima} and \textit{Heliotropium curassavicum} were 80.8% and 48.7% respectively (Robhi \textit{et al.} 2015). In the present study, when \textit{S. persica} exposed to 1000 ppm NaCl, phytodesalination yields were 25.33 ± 0.07 %. In a phytoremediation study for removal of metformin from aqueous solutions, after a period of 28 days, the removal efficiency of metformin by \textit{Typha latifolia} was between 74.0 ± 4.1 % and 81.1 ± 3.3 % (Cui & Schröder 2016). However, in our study, metformin remediation efficiency was between 58 ± 3.42 % and 63 ± 5.24 %. The ability of floating beds to remove heavy metals from water has also been reported by some authors (Lin \textit{et al.} 2019).

CONCLUSION

Phytoremediation studies are necessary for designing floating beds. These ecological floating beds are environmental friendly tools for enhancing water quality of water bodies especially rivers. \textit{C. alternifolius} is a fast-growing species with good ecological stability in polluted water which can absorb pollutants and remain healthy after the treatment period, hence easily improving water quality. Our results revealed that the efficiency of \textit{C. alternifolius} for designing a floating bed is significantly higher than \textit{A. retroflexus}, \textit{B. vulgaris}, while in the case of salinity of water or wastewater \textit{C. alternifolius} can never be useful. The function of \textit{A. retroflexus} and \textit{C. cristata} in removal of pollutants was similar. Among aquatic plants, \textit{C. alternifolius} can not tolerate salinity. Some of these pollutants are carcinogen, while there is no monitoring and remediation plan or act for them in aquatic ecosystems, hence increasing risks of the human and ecosystem health. Ecological floating beds are important tool for enhancing water quality and reducing risks of pollutant accumulation as well as endocrine disruption in the human and other living organisms. Moreover, our finding indicated that once phytodesalination, presence of nitrate ions in water elevates the phyto remediation potential. In the case of wastewater treatment, the ability of \textit{B. vulgaris} for desalination in a high-salinity environment can be considered as a key point for the design of an ecological wastewater treatment system.

ACKNOWLEDGMENT

Special thanks to UCLA for providing information.

REFERENCES

Aljani, R, Moogouei, R & Yadegarian, L 2019, Use of phytoremediation technique for removal of fluorine from drinking water resources in Mahmmod Abad, Ghazvin Province, Iran. MSc. Dissertation, North Tehran Branch, Islamic Azad University, Tehran, Iran, pp. 51-52.

Khalili Tanha, G, Barzegar, A, Shokrzadeh, M, Nikbakhash, N, Ansari, Z 2020, Correlation between serum concentration of diazinon pesticide and breast cancer incidence in Mazandaran Province, northern Iran. *Caspian J. Environ. Sci.* Vol. 18 No. 3 pp. 197-204

پژوهشی توان سیپروس آلترنیفولیوس، آمارانتوس رتروفلکسوس، کلوزیا کریستاتا و بامبوزا وولگاریس برای پالایش آلودگی‌های نوظهور و شوری زدائی: چشم‌اندازی به تکنولوژی بسترها شناور

رضا عامری سیاهوئی 1، مژگان زعیم دار 1، رکسانا موگوئی *1، سید علی جوزی 2

1- گروه مدیریت محیط زیست، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران
2- گروه محیط زیست، دانشگاه آزاد اسلامی واحد تهران شمال، تهران، ایران

چکیده
هدف اصلی این مطالعه بررسی توان گونه‌های مختلف گیاهی آبزی و خشک‌زی (سیپروس آلترنیفولیوس، آمارانتوس رتروفلکسوس، کلوزیا کریستاتا و بامبوزا وولگاریس) برای گیاه پالائی آلاینده‌ها و شوری‌زدائی از طریق سیستم بستر شناور است.

در این مطالعه، وقتی سیپروس آلترنیفولیوس در معرض جذب آترازین (20 میلی گرم بر لیتر)، OPC-LD (20 میلی گرم بر لیتر)، OPC-LD (00 میلی گرم بر لیتر)، فلوئور (01 میلی گرم بر لیتر) و 1-4 دی اکسین (25 میلی گرم بر لیتر) دریک سیستم تصفیه بستر شناور متغیر قرار گرفت، کارایی گیاه پالائی به ترتیب 10/6 ± 29/81 %، 01/2 ± 11/92 %، 00/1 ± 61/10 %، 11/0 ± 29/62 % و 21/2 ± 28/42 % بود. هنگامی که آمارانتوس رتروفلکسوس در معرض جذب متفورمین با غلظت 00 میلی گرم بر لیتر، کارایی گیاه پالائی به ترتیب 24/0 ± 61/ %، 11/2 ± 04/09 %، 11/1 ± 19/ % و 01 ± 28/ % بود. هنگامی که بامبوزا وولگاریس با کارایی 05/62 ± 42/ %، گزینه مناسبی است. سیپروس آلترنیفولیوس که گیاهی سریع الرشد و از نظر اکولوژیکی سازگار است در یک آب آلوده در طول مدت پالایش می‌تواند سالم بماند و در نتیجه گزینه مناسبی برای ایجاد بسترها اکولوژیکی شناور تصفیه است.

*مؤلف مسئول
Bibliographic information of this paper for citing:

Copyright © 2020