Ahmadzadeh, G, Majid, L, & Kourosh, M 2010, Comparison of artificial intelligence systems (ANN and ANFIS) in estimating the rate of transpiration of reference plants in very dry regions of Iran.Journal of Water and Soil, 2: 679-689. [In Persian].
Alam, NM, Sharma, GC, Moreira, E, Jana, C, Mishra, PK, Sharma, NK & Mandal, D 2017, Evaluation of drought using SPEI drought class transitions and log-linear models for different agro-ecological regions of India. Physics and Chemistry of the Earth, 100: 31-43.
Alizadeh, Sh, Mohammadi, H & Kordvani, P 2017, Modeling the Dispersion of Drought Caused by Climate Change in Iran Using Dynamic System. Land Expansion, 9: 169-188. [In Persian].
Amazzal, A, Ait-Talborjt, E, Hermas, J & Hafidi, N 2020, Importance of hydrological parameters in the distribution of planktonic eggs and larvae in an upwelling zone (Imessouane Bay, Moroccan Atlantic Coast). Caspian Journal of Environmental Sciences, 18: 1-12.
Ansari, H, Davari, K & Sanaeenejad, SH 2010, Drought monitoring using SEPI standardized rainfall and sedimentation index, developed on the basis of fuzzy logic. Journal of Soil and Water (Agricultural Sciences and Technology), 1: 38-52.
Asgharioskoee, M 2002, Application of neural networks in time series forecasting. Journal of Economic Researches of Iran, 4: 79-99. [In Persian].
Azizi, A, Krika, A & Krika, F 2020, Heavy metal bioaccumulation and distribution in Typha latifolia and Arundo donax: implication for phytoremediation. Caspian Journal of Environmental Sciences, 18: 21-29.
Babayan, E, kazanedari, L, Abbasi, F, modirian, R, Karimian, M & Melboji, S 2018, Monthly drought forecasting in the southwest drainage basin using CFSv.2 model. Iranian Water Resources Research, 14: 133-145. [In Persian].
Barqi, H, bazrafshan, J & Shayan, M 2018, Analysis and identification of drought effects on rural areas (Case study: Chahgah village, Fereydounshahr). Journal of Environmental Risks, 7: 141-160. [In Persian].
Bayazidi, M 2018, Drought evaluation of synoptic stations in the west of Iran using the Hirbst method and comparative neuro-fuzzy model. Iranian Water Resources Research, 14: 278-284. [In Persian].
Damavandi, AA, Rahimi, M, Yazdani, MR & Norouzi, AA 2016, Field monitoring of agricultural drought through time series of NDVI and LST indicators. MODIS data (Case study: Markazi Province, Iran). Geographic Information Research (Sepehr), 25: 115-126. [In Persian].
Ekhtiarikhajeh, S & Dinpazhoh, Y 2018, Application of the effective drought index (EDI) for studying dry periods (Tabriz, Bandar Anzali and Zahedan stations). Irrigation Sciences and Engineering, 11: 33-145.
Fanni, Z, Khalilalahi, HA, Sajjadi, J & Falsleman, M 2016, Analysis of the causes and consequences of drought in South Khorasan Province and Birjand. Journal of Planning and Space Design, 20: 175-200. [In Persian].
Fathi-Zadeh, H, Gholaminia, A, Mobin, M & Soodyzizadeh, H 2017, Investigating the Relationship between Meteorological Drought and Solar Variables in Some Iranian Standards. Environmental Hazards, 17: 63-87. [In Persian].
Gebremeskel, G, Tang, Q & Sun, S 2019, Droughts in East Africa: Causes, impacts and resilience. Earth-Science Reviews, 124: 68-96.
Gholamali, M, Younes, K, Esmaeil, H & Fatemeh, T 2011, Assessment of geostatistical methods for spatial analysis of SPI and EDI drought Indices. World Applied Sciences Journal, 15: 474-482.
Ghorbani, K, Valizadeh I & Bararkhranpour, S 2018, Investigation of spatial variations of spatial variance of SPEI drought index in Iran. Desert Management Journal, 11: 38-25.
Haddadi, H & Heidari, H 2015, Detection of the effect of precipitation fluctuations on surface water flood in Lake Urmia catchment basin. Geography and Environmental Planning, 57: 247-262. [In Persian].
Hao, Z, Hao, F, Singh, V, Xia, Y & Xinyishen, O 2016, A theoretical drought classification method for the multivariate drought index based on distribution properties of standardized drought indices. Advances in water resources, 14: 240-247.
Hartman, E, Keeler, JD & Kowalski, JM 1990, Layered neural networks with Gaussian hidden units as universal approximations. Neural Computation, 2: 210-215.
Hejabi, S, Irannejad, P & Bazrafshan, J 2012, Adjustment of the Palmer Drought Extreme Index (PDSI) Based on the Marine-Drought Level Interaction Scheme (ALSIS) in the Karkheh catchment basin. Iranian Journal of Water Resources, 14: 204-219. [In Persian].
Hejazizazadeh, Z & Javiyazadeh, S 2019, Analysis of Drought Spatial Statistics in Iran. Journal of Applied Geosciences Research, 19: 251-277. [In Persian].
Huanga, S, Huanga, Q, Changa, J, Zhua, Y & Lengb, G 2015, Drought structure based on a nonparametric multivariate standardized drought index across the Yellow River basin China. Journal of Hydrology, 530: 127-136.
Jafari, GhH, Bakhtiari, F & Dostkamian, M 2018, Analysis of the spatial association of droughts with the watershed water flow of Ghezel Ozan basin. Geography and Development, 15: 79-94.
Jafarnejad, A & Kia, SM 2010, Fuzzy Logic in MATLAB. Kian Rayaneh Sabz publication, 157-180.
James, H, Stagge, a, IreneKohn, b, Lena, M, Tallaksen, A & Kerstin, S 2015, Modeling drought impact occurrence based on meteorological drought indices in Europe. Journal of Hydrology, 530: 37-50.
Jandarmian, I, Shakiba, A & Nasseri, H 2015, Study of Drought Status and Its Relationship with Quantitative and Qualitative Changes in Groundwater in Sarab Plain. International Conference on Development, Focusing on Agriculture, Environment and Tourism, Iran, Tabriz, 16-17. [In Persian].
Jinum, M & Jeonbin, K 2017, Evaluatin historical drought charactristics simulated in Cordexast Asia against observations. International journal of climatology, 25: 32-43.
Kamasi, M, Mohammadi, M & Montaseri, H 2016, Drought prediction with SPI and EDI index using ANFIS modeling method in Kohgiluyeh and Boyerahmad province. Agricultural Meteorology Journal, 1: 36-47.
Keshtkai, S 2015, Drought Study in West Azarbaijan province with Spi and Gis Index. International Conference on Agricultural, Environment and Tourism, Iran, Tabriz, 16-19.
Khanjani, T, Ataei, M & Peyman, T 2016, Influence of Wind Speed on RBF Neural Network Based on Chaos Theory. Computational Intelligence in Electrical Engineering, 7: 87-96. [In Persian].
Kis, A, Rita, P & Judit, B 2017, Multi- model analysis of regional dry and wet condition for the Carpatian Region. International journal of climatology, 17: 4543-4560.
Konarkuhi, A SoleimanJahi, H, Falahi, S, Riahimadvar, H & Meshkat, Z 2010, Using the New Intelligent Fuzzy-Neural Recognition Inventory System (ANFIS) to predict the human cannibalization potential of human papillo virus. Journal of Arak University of Science and Technology, 13: 95-105. [In Persian].
Liu, M, X. Xianli, Y, sun, A, lexander & Kelin, W 2017, Decreasing spatial variability of drought in south west china during 1959-2013. International journal of climatology, 21: 4610-4619.
Makvandi, R, Maghsoudlo-Kamali, B & Mohammadfam, I 2012, Utilization of TOPSIS Multivariate Decision Making Model for Assessing the Environmental Consequences of Oil Refineries (Case Study: Khuzestan Extra Heavy Oil Refinery). Environmental Studies, 5: 77-86. [In Persian].
Malchovsky, Y 2007, Geographic Information System and Multi-criteria Decision Analysis, Translated by Akbar Parizgar. Ata Ghafari Flooded. Tehran. Publishing Side, 9: 543-563. [In Persian].
Marchanta, BP & Bloomfield, JP 2018, Spatio-temporal modelling of the status of groundwater droughts. Journal of Hydrology, 564: 397-413.
Mdehheb, Z, Elkihel, B, Bouamama, M, Hammouti, B & Delaunois, F 2020, The environmental management system and its application impacts on the business economy in the eastern region of Morocco. Caspian Journal of Environmental Sciences (CJES), 18: 13-20.
Mirzaee, F, Iraqi, Nezhad, Sh & Big-Haddad, A 2015, Development of WEAP Integrated Water Model Model for Drought Condition Modeling. Journal of Engineering and Watershed Management, 7: 85-97. [In Persian].
Modaresirad, A, Ghahramani, B, Khalili, D, Ghahramani, Z & Ahmadiardakani, S 2017, Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi-arid regions. Advances in Water Resources, 54: 336-353.
Montaseri, M & Amirataee, B 2015, Stochastic estimation of drought prevalence (Case study: Northwest of Iran). Journal of Civil and Environmental Engineering, 45: 12-26. [In Persian].
Montaseri, M, Norjo, A, Bahmanesh, J & Akbari, M 2018, Wet season and meteorological drought in southern basins of Lake Urmia. Ecoehydrology, 1: 189-202.
Moradi, H, Tayyi, M, Ghasemian, D, Chesghi, J & Bahari, R 2008, Simulation and analysis of the relationship between water and climate droughts using probabilistic models of Babol plain. Iran Watershed Association, 2: 71-74. [In Persian].
Nazmfar, H & Amina, A 2014, Measurement of spatial inequality in using educational indices by TOPSIS method (Case study: Khorestan Province). Two Chapters of Educational Planning Studies, 3: 115-134. [In Persian].
Nowrooz, a, Rostami, N & Jahangir, M 2018, The prediction of drought conditions during the period of 2018-2037 under a change-oriented approach (Case study: Ilam and Dehloran stations). Ecohydrology, 5: 977-991. [In Persian].
Parsamehr, AH & Khosravani, Z 2017, Determination of drought determination using multi-criteria decision making based on TOPSIS. Research on Pasture and Desert of Iran, 24: 16-29.
Qi, L, Guanlan, Z, Shahzad, A, Xiaopeng, W, Guodong, W, Zhenkuan, P & Jiahua, Z 2019, SPI-based drought simulation and prediction using ARMA-GARCH model. Applied Mathematics and Computation, 355: 96-107.
Qorbani, K, Walizadeh, I & Barkhranpour, S 2018, Investigation of spatial variations of spatial variance of SPEI drought variables in Iran. Desert Management Journal, 11: 25-38. [In Persian].
Quesada, B, Giuliano, M, Asarre, D, Rangecoft, S & Vanloon, A 2008, Hydrological change: Toward a consistent approach to assess changes on both floods and droughts. Advances in Water Resources, 5: 31-35.
Safarianzengir V, Sobhani, B 2020, Simulation and analysis of natural hazard phenomenon, drought in southwest of the Caspian Sea, IRAN. Carpathian Journal of Earth and Environmental Sciences,15: 127-136.
Safarianzengir, V, Sobhani, B, Asghari, S 2019, Modeling and monitoring of drought for forecasting it, to reduce natural hazards atmosphere in western and north western part of Iran, Iran. Air Qual Atmos Health, 6: 68-79.
Salahi, B & Mojtabapour, F 2016, Spatial analysis of climate drought in northwest of Iran using spatial correlation statistics. Journal of Environmental Spatial Spatial Analysis, 3: 1-20. [In Persian].
Salajeghe, A & Fathabadi, A 2009, Investigating the possibility of estimating the suspended load of Karaj River using fuzzy logic and neural network. Journal of Rangeland and Watershed Management, (Iranian Journal of Natural Resources), 2: 271-282.
Samidianfard, S & Asadi, I 2018, Projection of SPI drought index by multiple regression and supportive vector regression methods. Water and Soil Conservation, 6: 1-16.
Shamsniya, A, Pirmoradian, N & Amiri, N 2008, Drought modeling in Fars Province using Time Series Analysis. Geography and Planning, 28: 165-189.
Sobhani, B & Safarianzengir, V 2018, Investigating and predicting the risk of monthly rainfed exposure to horticultural and agricultural products in the northern strip of Iran (Golestan, Guilan and Mazandaran provinces). Journal of Environmental Spatial Analysis, 5: 125-144. [In Persian].
Sobhani, B & Safarianzengir, V 2019a, Modeling, monitoring and forecasting of drought in south and southwestern Iran, Iran. Modeling Earth Systems and Environment, 4: 89-101.
Sobhani, B & Safarianzengir, V 2019b, Investigation hazard effect of monthly ferrrin temperature on agricultural products in north bar of Iran. Iraqi Journal of Agricultural Sciences, 50: 320-330.
Sobhani, B & Safarianzengir, V 2020, Evaluation and zoning of environmental climatic parameters for tourism feasibility in northwestern Iran. located on the western border of Turkey.
Modeling Earth Systems and Environment,
https://doi.org/10.1007/s40808-020-00712-1.
Sobhani, B, GhafariGilandeh, A & Golvost, A 2015, Drought monitoring in Ardebil province using the developed SEPI index based on fuzzy logic. Journal of Applied Geosciences Research, 15: 51-72. [In Persian].
Sobhani, B, Jafarzadehaliabad, L & Safarianzengir, V 2020a, Investigating the effects of drought on the environment in northwestern province of Iran, Ardabil, using combined indices. Iran. Modelling Earth Systems and Environment, 9: 23-49.
Sobhani, B, Safarianzengir, V & Kianian, MK 2019a, Drought monitoring in the Lake Urmia basin in Iran. Arabian Journal of Geosciences, 12: 437-448.
Sobhani, B, Safarianzengir, V & Miridizaj, F 2019c, Feasibility study of potato cultivating of Ardabil province in Iran based on VIKOR model. Revue Agriculture, 10: 92 – 102.
Sobhani, B, Safarianzengir, V & Yazdani, MH 2020b, Modelling, evaluation and simulation of drought in Iran, southwest Asia. Journal of Earth System Science,129: 100.
Sobhani, B, Safarianzengir, V, Kianian & MK 2019b, Modeling, monitoring and prediction of drought in Iran. Iranian (Iranica) Journal of Energy and Environment, 10: 216-224. doi: 10.5829/ijee.2019.10.03.09
Sobhani, B, Safarianzengir, V, Kianian, MK 2018, Potentiometric mapping for wind turbine power plant installation, Guilan Province in Iran. Journal of Applied Sciences and Environmental Management, 22: 1363-1368.
Spinoni, j, Naumann, G, vogt, j & Barbosa, P 2015, The biggest drought events in Europe from 1950-2012. Journal of Hydrology: Regional, 3: 509-524.
Torabipour, H, Shahinejad, B & Dehghani, R 2018, Drought Estimation Using Smart Networks. Hydrogeomorphology, 14:179-197.
Touma, D, Ashfaq, M, Nayak, M, Kao, SC & Diffenbaugh, N 2015, A multi-model and multi-index evaluation of drought characteristics in the 21st century. Journal of Hydrology, 526: 196-207.
Wei, H, ZaiQing, C, Dongdong, Z & Guolin, F 2019, Drought loss assessment model for southwest China based on a hyperbolic tangent function. International Journal of Disaster Risk Reduction, 33: 477-484.
Zeinali, B & Safarianzengir, V 2017, Drought Monitoring in Urmia Lake Basin Using Fuzzy Index. Journal of Environmental Risks, 6: 37-62. [In Persian].
Zeinali, B, Asghari, S & Safarianzengir, V 2017, Drought monitoring and assessment of its prediction in Lake Urmia basin using SEPT and ANFIS model. Environmental Impact Analysis Spatial Analysis Journal, 4: 73-96. [In Persian].
Zelekei, T, Giorgi, T, Diro, F & Zaitchik, B 2017, Trend and periodicity of drought over Ethiopia. International Journal of Climatology, 65: 4733-4748.
Zolfaghari, H & Nourizamara, Z 2016, Application of drought index (CPEL) in determining proper variables for drought analysis in Iran. Journal of Spatial Analysis of Environmental Hazards, 3: 99-114 (In Persian).
Zolfagharpour, HR, Nowrouz, P, Mohseni‐Bandpei, A, Majlesi, M, Rafiee, M & Khalili, F 2020, Influences of temperature, waste size and residence time on the generation of polycyclic aromatic hydrocarbons during the fast pyrolysis of medical waste. Caspian Journal of Environmental Sciences, 18: 47-57.