Abou-Shanab, RAI, Ghanem, K, Ghanem, N & Al-Kolaibe, A 2008, The role of bacteria on heavy-metal extraction and uptake by plants growing on multi-metal-contaminated soils. World Journal of Microbiology and Biotechnology, 24: 253-262.
Al-Ghamdi, AAM & Hasnah, MJ 2012, Interaction between arbuscular mycorrhiza and heavy metals in the rhizosphere and roots of Juniperus procera. International Journal of Agriculture and Biology, 3: 66-76.
Andrade, SAL, Gratao, PL, Schiavinato, MA, Silveira, APD, Azevedo, RA & Mazzafera, P 2009, Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations. Chemosphere, 75: 1363-1370.
Arriagada, CA, Herrera, MA & Ocampo, JA 2005, Contribution of arbuscular mycorrhizal and saprobe fungi to the tolerance of Eucalyptus globulus to Pb. Water Air and Soil Pollution, 166: 31-47.
Assuncao, AGL & Schat, H 2003, Thlaspi caerulescens, an attractive model species to study heavy metal hyper - accumulation in plants. New Phytologist, 159: 351-360.
Berta, G, Fusconi, A & Hooker, JE 2002, Arbuscular mycorrhizal modifications to plant root systems: scale, mechanisms and consequences In: Gianinazzi S et al. (eds.) Mycorrhizal Technology in Agriculture, pp. 71–85. Birkäuser Verlag, Basel, Boston, Berlin.
Braud, A, Jezequel, K, Bazot, S & Lebeau, T 2009, Enhanced phytoextraction of an agricultural Cr and Pb-contaminated soil by bio - augmentation with siderophore-producing bacteria. Chemosphere, 74: 280-286.
Cariny, T 1995, The reuse of contaminated land. John Wiley and Sons Ltd. Publisher, p. 219.
Chao, CC & Wang, YP 1990, Effects of heavy-metals on the infection of vesicular arbuscular mycorrhizae and the growth of maize. Journal of the Agricultural Association of China, 152: 34–45.
Chapman, HD 1965, Cation exchange capacity. In: Methods of soil analysis. Chemical and microbiological properties. Part. 2. American Society of Agronomy. (ed. Black, CA) pp. 891-901. Madison, WI, USA.
Cicatelli, A, Lingua, G, Todechini, V, Biondi, S, Torrigiani, P & Castiglione, S 2010, Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal contaminated soil, and this is associated with up regulation of foliar metallothionein and polyamine biosynthetic gene expression. Annals of Botany, 106: 791–802.
Clark, BR & Zeto, SK 2000, Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition, 23: 867–902.
Dary, M, Chamber-Pérez, MA, Palomares, AJ & Pajuelo, E 2010, “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Journal of Hazardous Materials, 177: 323–330.
De Souza, LA, Andrade, SAL, De, Souza, SCR & Schiavinato, MA 2012, Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiologiae Plantarum, 34: 523–31.
Dell'Amico, E, Cavalca, L, Andreoni, V 2008, Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology and Biochemistry, 40: 74-84.
Gee, GH & Bauder, JW 1986, Particle size analysis. In: Methods of soil Analysis. Physical Properties. SSSA, (ed. Klute, A) pp. 383-411. Madison, WI.
Giovannetti, M & Mosse, B 1980, An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist, 84: 489-500.
Glick, BR 2010, Using soil bacteria to facilitate phytoremediation. Biotechnology Advances, 28: 367–74.
Gohre, V & Paszkowski, U 2006, Contribution of the arbuscular mycorrhizal symbiosis to heavy metal Phytoremediation. Planta, 223: 1115–1122.
Gonzalez-Chavez, MC, Carrillo-Gonzalez, R & Wright, SF & Nichols, K 2004, The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environmental Pollution, 130: 317–323.
Grace, C & Stribley, DP 1991, A safer procedure for routine staining of VAM fungi. Mycological Research, 95: 1160-1162.
Gupta, PK 2000, Soil, plant, water, and fertilizer analysis. Agrobios, New Delhi, India. p. 438
Gupta, S, Nayek, S, Saha, RN & Satpati, S 2008, Assessment of heavy metal accumulation in macrophyte, agricultural soil and crop plants adjacent to discharge zone of sponge iron factory. Environmental Geology, 55: 731-739.
Hovsepyan, A & Greipsson, S 2004, Effect of arbuscular mycorrhizal fungi on phytoextraction by corn (Zea mays) of lead-contaminated soil. International Journal of Phytoremediation, 6: 305-321.
Jansa, J, Smith FA & Smith, SE 2008. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 177: 779–789.
Kaldorf, M, Kuhn, AJ, Schröder, WH, Hildebrandt, U & Bothe, H 1999, Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. Journal of Plant Physiology, 154: 718-728.
Karimi, A, Khodaverdiloo, H, Sepehri, M & Rasouli Sadaghiani, MH 2011, Arbuscular mycorrhizal fungi and heavy metal contaminated soils. African Journal of Microbiology Research, 5: 1571-1576.
Khan, AG 2005, Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. Journal of Trace Elements in Medicine and Biology, 18: 355–364.
Khodaverdiloo, H, Rahmanian, M, Rezapour, S, Ghorbani Dashtaki, Sh, Hadi, H & Han, FX 2012, Effect of wetting-drying cycles on redistribution of lead in some semi-arid zone soils spiked with a lead salt. Pedosphere, 22: 304–313.
Khoramivafa, M, Shokri, K, Sayyadian, K & Rejali, F 2012, Contribution of microbial associations to the cadmium uptake by peppermint (Mentha piperita). Annals of Biological Research, 3: 2325-2329.
Langer, I, Krpata, D, Fitz, WJ, Wenzel, WW & Schweiger, PF 2009, Zinc accumulation potential and toxicity threshold determined for a metal-accumulating Populus canescens clone in a dose–response study. Environmental Pollution, 157: 2871–2877.
Lasat, MM 2002, Phytoextraction of toxic metals: a review of biological mechanisms. Journal of Environmental Quality, 31: 109–120.
Lim, SR & Schoenung, JM 2010, Human health and ecological toxicity potentials due to heavy metal content in waste electronic devices with flat panel displays. Journal of Hazardous Materials, 177: 251-259.
Ma, Y, Prasad, MNV, Rajkumar, MH & Freitas, H 2011, Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnology Advances, 29: 248–258.
Ma, Y, Rajkumar M & Freitas, H 2009, Improvement of plant growth and nickel uptake by nickel resistant-plant growth promoting bacteria. Journal of Hazardous Materials, 166: 1154–1161.
Malcova, R, Vosatka, M & Gryndler, M 2003, Effects of inoculation with Glomus intraradices on lead uptake by Zea mays L. and Agrostis capillaris L. Applied Soil Ecology, 23: 255-267.
Miller, JJ & Curtin, D 2006, Electrical Conductivity and Soluble Ions. In: Carter MR, Gregorich, EG (eds.) Soil sampling and methods of analysis. Second ed. pp. 161-171. CRC Press. Boca Raton, FL.
Miransari, M 2011, Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnology Advances, 29: 645–653.
Nowak, J 2007, Effects of cadmium and lead concentration and arbuscular mycorrhiza on growth, flowering and heavy metal accumulation in scarlet sage (Salvia Splendens Seelo ‘Torreador’). Acta Agrobotanica, 60: 79–83.
Orłowska, E, Przybyłowicz, W, Orlowski, D, Turnau, K & Mesjasz-Przybyłowicz, J 2011, The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environmental Pollution, 159: 3730–3738.
Pulford, ID & Watson, C 2003, Phytoremediation of heavy metal-contaminated land by trees. Environment International, 29: 529–540.
Punamiya, P, Datta, R, Sarkar, D, Barber, S, Patel, M & Da, P 2010, Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass (Chrysopogon zizanioides (L.)). Journal of Hazardous Materials, 177: 465-474.
Rabie, GH 2005, Role of arbuscular mycorrhizal fungi in phytoremediation of soil rhizosphere spiked with poly aromatic hydrocarbons. Mycobiology, 33: 41-50.
Rajkumar, M, Ae, N, Prasad, MNV, Freitas, H 2010, Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28: 142–9.
Rajkumar, M, Sandhya, S, Prasad, MNV & Freitas, H 2012, Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnology Advances, 30: 1562–1574.
Rayment, GE & Higginson, FR 1992, Australian Laboratory Handbook of Soil and Water Chemical Methods. Inkata Press, Melbourne.
Sharma, P & Dubey, RS 2005, Lead Toxicity in plants. Plant Physiology, 17: 35-52.
Sheng, XF, Xia, JJ, Jiang, CY, He, LY & Qian, M 2008, Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156: 1164-1170.
Smith, SE & Read, DJ 1997, Mycorrhizal Symbiosis, Academic Press, San Diego, USA.
Vivas, A, Azcón, R, Biró, B, Barea, JM & Ruíz-Lozano, JM 2003, Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Canadian Journal of Microbiology, 49: 577–588.
Walkley, A & Black, IA 1934, An examination of the detjareff method for determining soil organic matter and a proposed modif- ication of the chromic acid titration method. Soil Science, 37: 29-38.
Weissenhorn, I, Leyval, C, Belgy, G, Berthelin, J 1995, Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza, 5: 245-251.
Wenzel, WW 2009, Rhizosphere processes and management in plant-assisted bioreme- diation (phytoremediation) of soils. Plant and Soil, 321: 385–408.
Yang, R, Yu, G, Tang, J & Chen, X 2008, Effects of metal lead on growth and mycorrhizae of an invasive plant species (Solidago canadensis L.). Journal of Environmental Sciences, 20: 739–744.
Zarei, M, Wubet, T, Schäfer, SH, Savaghebi, GR, Salehi Jouzani, G, Khayam Nekouei, M & Buscot, F 2010, Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 158: 2757-2765.
Zhang, YF, He, LY, Chen, ZJ, Zhang, WH, Wang, QY, Qian, M & Sheng, XF 2011, Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Journal of Hazardous Materials, 186: 1720–1725.
Zhou, JL 1999, Zn biosorption by Rhizopus arrhizus and other fungi. Applied Microbiology and Biotechnology, 51: 686–693.
Zhuang, X, Chen, J, Shim, H & Bai, Z 2007, New advances in plant growth promoting rhizobacteria for bioremediation. Environment International, 33: 406–413.