Genetic diversity in the Persian sturgeon, Acipenser percicus, from the south Caspian Sea based on mitochondrial DNA sequences of the control region

Authors

1 Dept. of Fisheries, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmehsara, Iran.

2 International Sturgeon Research Institute, P.O. Box 41635-3464, Rasht, Iran.

Abstract

The Persian sturgeon, Acipenser persicus (Borodin, 1897), is an economically important species, which mainly inhabits the Caspian Sea. However, little is known about its population genetic structure. In this study, variation in nucleotide sequences of the mitochondrial DNA (mtDNA) control region of wild stock Persian sturgeon was determined to assess the genetic diversity among different natural populations of this species. The fish (n = 46) were collected from four sites (Astara, Sefidrood, Noshahr and Bandare- Turkaman) in the south Caspian Sea. As a result 6 haplotypes and 44 variable sites were found. The average haplotype diversity (h) and nucleotide diversity (?) were 0.640?0.028 and 0.0442?0.011, respectively. Analysis of molecular variance (AMOVA) demonstrated that most variations occurred within samples, and the difference between the populations from Astara and Noshahr or Bandare- Turkaman was not significant (p <0.001). Estimates of gene flow indicated reproductive isolation between the Sefidrood River population and the other collections. The divergence might be related to geographical isolation. The results are consistent with the findings from PCR-RFLP analysis (PCR-RFLP) and suggest considerable genetic diversity of the population from Sefidrood River.
 
REFERENCES
Ataei, M. (2004). Investigation of genetic variation in Persian sturgeon, Acipenser persicus, in Sefidrood river using PCRRFLP technique. Thesis in Master of Science. The University of Guilan, Iran, 156 p. (In Persian).
Avise J.C. (1994) Molecular Markers, Natural History, and Evolution. Chapman and Hall, New York, NY, 511 p.
Billington N. and Hebert D.N. (1991) Mitochondrial DNA diversity in fishes and its implications for introductions. Can. J. Fish. Aquat. Sci. 48 (Suppllement 1), 80–94.
 Birstein V.J. (1993) Sturgeons and paddlefishes: threatened fishes in need of conservation. Conserv. Biol. 7, 773-787.
 Birstein V.I, Bemis W.E, and Waldman J.R. (1997) The threatened status of Acipenseriform species: a summary. Environmen. Biol. Fish. 48, 427-435.
Brown W.M. (1985). The mitochondrial genome of animals. In: MacIntyre, R.J. (Ed.), Molecular Evolutionary Genetics. Plenum, New York, NY, pp. 95–130.
Brown J.R., Beckenbach A.T. and Smith M.J. (1993) Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol. Biol. Evol. 10, 326– 341.
Brown K.H. (2008) Fish mitochondrial genomics: sequence, inheritance and functional variation. J. Fish Biol. 72, 355– 374.
Excoffier L., Smouse P.E., and Quattro J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491.
Excoffier L., Laval G., and Schneider S. (2005) Arlequin Ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. 1, 47–50.
Grunwald C., Stabile, J., Waldman, J.R., Gross, R., Wirgin, I. (2002) Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences. Mol. Ecol., 11, 1885-1898.
Hillis, D and Moritz, M. C. (1990). Molecular taxonomic. Sinauer associate, Inc. Publishers. Massachusetts. Hudson R.R., Slatkin M., Maddison W.P. (1992) Estimation of levels of gene flow from DNA sequence data. Genetics 132, 583–589.
Kimura M. (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.
KhoshKholgh M., Pourkazemi M., Kamali A., Rezvani Gilkolaie S. (2008) Investigation on genetic structure of Russian sturgeon (Acipenser gueldenstaedtii) populations of the north (Volga River) and south Caspian Sea (coasts of Iran and Turkmenistan) using microsatellite techniques. Iran. Sci. Fish. J. 16, 69-80.
Kumar S, Tamura K. & Nei M. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5, 150–163.
Liua Z.J.& J.F. Cordes. (2004) DNA marker technologies and their applications in aquaculture genetics. Aquaculture 238, 1 –37.
Ludwig, A., May, B., Debus, L., and Jenneckens, I. (2000) Heteroplasmy in the mtDNA Control Region of Sturgeon (Acipenser, Huso and Scaphirhynchus). Genetics 156: 1933–1947.
Ludwig, A. (2006) A sturgeon view on conservation genetics. Europ. J. Wild. Res. 52, 3-8.
Moghim M., Kor D., Tavakolieshkalak M. & Khoshghalb M.B. (2006) Stock status of Persian sturgeon (Acipenser persicus, Borodin 1897) along the Iranian coast of the Caspian Sea. J. Appl. Ichthyol. 22, 99-107.
Mugue, N.S., Barmintseva, A. E., Rastorguev, S. M., Mugue, V. N. and Barmintsev, V. A. (2008) Polymorphism of the Mitochondrial DNA Control Region in Eight Sturgeon Species and Development of a System for DNABased Species Identification. Russ. J. Genet. 2008. 44, 793–798.
Norouzi M., Porkazemi M., Keyvan A., Fatemi S.M.R. and Kazemi B. (2008) Population genetic structure of Stellate sturgeon (Acipenser stellatus) in the south Caspian Sea using microsatellite markers. J. Fish. Aquat. Sci. 3, 158-166.
Ong T.L., Stabile J., Waldman J.R. and Wirgin I. (1996) Genetic divergence of Atlantic and Gulf of Mexico sturgeon based on sequence analysis of the mtDNA control region. Copeia 1996, 464–469.
Pikitch E.K., Doukakis P., Lauck L., Chakrabarty P. & Erickson D.L. (2005) Status, trends and management of sturgeon and paddlefish fisheries. Fish Fish. 6, 233–265.
Pourkazemi M. (1996) Molecular and biochemical genetic analysis of sturgeon stocks from the South Caspian Sea. PhD Dissertation, University of Wales, Swansea.
Pourkazemi M., Skibinski, D.O.F. & Beardmore J.A., (1999). Application of mtDNA d-loop region for the study of Russian sturgeon population structure from Iranian coastline of the Caspian Sea. J. Appl. Ichthyol.15, 23–28.
Pourkazemi M., Skibinski D.O.F. & Beardmore A. (2000) A Preliminary study on phylogenetic relationships between five sturgeon species in the Iranian coastline of the Caspian Sea. Iran. J. Fish. Sci. 2, 98-109.
Qasemi A., Pourkazemi M. & Kalbasi M. (2004) Genetic variation in ship sturgeon (Acipenser nudiventris) from the south Caspian Sea using PCR-RELP. Iran. Sci. Fish. J.4, 151-163.
Rezvani Gilkolaei S. (1997) Molecular population genetic studies of sturgeon species in the South Caspian Sea. PhD Dissertation, University of Wales, Swansea.
Rezvani Gilkolaie S. (2000) study of mtDNA variation of Russian sturgeon population from the south Caspian Sea using RFPL analysis of PCR amplified ND5/6 gene regiens. Iran. J. Fish. Sci. 2, 87-98.
Rozas J, Sa´nchez-DelBarrio J.C, Messeguer X.& Rozas R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497.
Safari R., Pourkazemi M., Rezvani Gilkolaie S. & Shabani A., (2008) Genetic relationships of Iranian coastline ship sturgeon, Acipenser nudiventris, samples and Ural population based on microsatellite DNA. Iran. J. Fish. Sci. 7, 229-241.
Shabani A., Pourkazemi M., Kamali A., Rezvani Gilkolaie S. & Vitskayal V.V. (2003) Study of Genetic variation in stellate sturgeon (Acipenser stellatus) from north (Volga river) and south (Gorganrud river) Caspian Sea using PCR-RFLP of mitochondrial ND 5/6 gene. Iran. J. Mar. Sci. Tech. 4, 159-169.
Thompson J.D., Gibson TJ., Plewniak F., Jeanmougin F., Higgins D.G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid. Res. 24, 4876–4882.
Vecsei P. & Artyukhin E. (2001) Threatened fishes of the world: Acipenser persicus Borodin, 1897 (Acipenseridae) Environmen. Biol. Fish. 61, 160.
Vlasenko A.D., Pavlov A.V. & Vasil’ev V.P. (1989) Acipenser persicus Borodin, 1897. In: The Freshwater Fishes of Europe. Vol. 1. Pt. II. General Introduction to Fishes. Acipenseriformes (ed. J. Holcik). AULA-Verlag, Wiesbaden, pp. 345–366.
Vodolazhskii D.I., Kornienko, I.V. & Voinova N.V. (2008) Hypervariability of the D-loop Region in Mitochondrial DNA of Russian Sturgeon Acipenser gueldenstaedtii (Acipenseriformes, Acipenseridae). J. Ichthyol. 48, 188-197.
Waldman J.R., Grunwald C., Stabile J. & Wirgin I. (2002) Impacts of life history and biogeography on genetic stock structure in Atlantic sturgeon, Acipenser oxyrinchus oxyrinchus, Gulf sturgeon A. oxyrinchus desotoi, and shortnose sturgeon, A. brevirostrum. J. Appl. Ichthyol.18, 509–518.
Weir B.S.& Cockerham C.C. (1984) Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
Wirgin I., Stabile J.E. & Waldman J.R. (1997) Molecular analysis in the conservation of sturgeons and paddlefish. Environmen. Biol. Fish. 48, 385-398.
Wirgin I., Waldman J.R., Rosko L., Gross R., Collins M.R., Rogers S.G. & Stabile J. (2000) Genetic structure of Atlantic sturgeon populations based on mitochondrial DNA control region sequences. Trans. American Fish. Soc. 129, 476-486.
Wirgin I., Waldman J., Stabile, J., Lubinski, B. & King T., (2002) Comparison of mitochondrial DNA control region sequence and microsatellite DNA analyses in estimating population structure and gene flow rates in Atlantic sturgeon Acipenser oxyrinchus. J. Appl. Ichthyol.18, 313–319.
Wirgin I., Grunwald C., Carlson E., Stabile J., Peterson D. & Waldman J. (2005) Range-wide population structure of shortnose sturgeon Acipenser brevirostrum based on sequence analysis of the mitochondrial DNA control region. Estuaries 28, 406-421.
 

Ataei, M. (2004). Investigation of genetic variation in Persian sturgeon, Acipenser

Khoshkholgh et al., 23persicus, in Sefidrood river using PCR-RFLP technique.Thesis in Master of Science. The University of Guilan,Iran, 156 pp. (In Persian).

 

Avise J.C. (1994) Molecular Markers, Natural History, and Evolution. Chapman and Hall, New York, NY. 511 pp.

 

Billington N. and Hebert D.N. (1991) Mitochondrial DNA diversity in fishes and its implications for introductions. Can. J. Fish. Aquat. Sci. 48 (Suppllement 1), 80–94.

 

Birstein V.J. (1993) Sturgeons and paddlefishes: threatened fishes in need of conservation. Conserv. Biol. 7, 773-787.

 

Birstein V.I, Bemis W.E, and Waldman J.R. (1997) The threatened status of Acipenseriform species: a summary. Environmen. Biol. Fish.48, 427-435.

 

Brown W.M. (1985). The mitochondrial genome of animals.In: MacIntyre, R.J. (Ed.), Molecular Evolutionary Genetics. Plenum, New York, NY, pp. 95–130.

 

Brown J.R., Beckenbach A.T. and Smith M.J. (1993) Intraspecific DNA sequence variation of the mitochondrial control region of white sturgeon (Acipenser transmontanus). Mol. Biol. Evol. 10, 326–341.

 

Brown K.H. (2008) Fish mitochondrial genomics: sequence, inheritance and functional variation. J. Fish Biol. 72, 355–374.

 

Excoffier L., Smouse P.E., and Quattro J.M. (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics131, 479-49l.

 

Excoffier L., Laval G., and Schneider S. (2005) Arlequin Ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinform. 1, 47–50.

 

Grunwald C., Stabile, J., Waldman, J.R., Gross, R., Wirgin, I. (2002) Population genetics of shortnose sturgeon Acipenser brevirostrum based on mitochondrial DNA control region sequences. Mol. Ecol., 11, 1885-1898.

 

Hillis, D and Moritz, M. C. (1990). Molecular taxonomic. Sinauer associate, Inc. Publishers. Massachusetts.

&nbs