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ABSTRACT 
Estimating the amount of variation due to spatial dependence at different scales provides a basis for 
designing effective experiments. Accurate knowledge of spatial structures is needed to inform silvicultural 
guidelines and management decisions for long term sustainability of forests. Furthermore, geostatistics is a 
useful tool to describe and draw map the  spatial variability and estimation of forest variables. Therefore, 
this research was conducted to investigate on spatial variability and to estimate forest stock variables using 
geostatistical approach in a mixed hardwood forest, located in the Caspian region of Iran. Field sampling 
was performed based on a 150m by 200m systematic rectangular grid of 3 clustered plots (50m away). Each 
sample plot consisted of two concentric circles. Overall, 434 sample plots were measured in 502 hectares. 
Experimental variograms for forest basal area, volume and tree density were calculated and plotted using 
the geo- referenced inventory plots. All the variograms showed weak spatial auto- correlations between 
samples, even in short distances. Estimations were made using fitted variogram models and ordinary block 
kriging. Cross- validation results showed that all the estimations are biased, because of the large variability 
and weak spatial structure in the forest stock variables. Therefore, kriging could not make accurate 
estimations because of high spatial variability of forest growing stock related variables in this heterogeneous 
and uneven-aged forest. 
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INTRODUCTION 
Estimation and mapping of forest resources 
is an inescapable premise of management, 
planning and research. Time and cost 
constraints do not usually allow exhaustive 
measurements; hence, sampling schemes 
need to be designed and implemented to 
estimate population values (Husch et al. 
1982).  
Conventional statistics are generally 
inadequate to describe spatially correlated 
data. Regionalized variable theory, 
popularly known as geostatistics, is a 
methodology for analysis of spatially 
correlated data (Clark, 1979). Geostatistics 
originated from mining and geology. 
However, it has been spread into several  
 

 
fields of applications, first into petroleum 
engineering and then into hydrogeology, 
meteorology, soil science, agriculture, 
fisheries, pollution and environmental 
protection (Zahedi Amiri, 1998). Nowadays, 
geostatistical methods have found their 
applications in forestry. Geostatistics 
provides a natural framework for estimation 
techniques in forest inventory sampling 
(Mandallaz, 1991). The motivation for using 
geostatistical methods is that classical 
design-based methods are often weak for 
small area estimation within global 
inventories (because of small number of 
sample plots used for the estimation), and 
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there is also an increasing demand to use 
regional or national inventory data for local 
estimation purposes (Mandallaz, 1993). 
In this context, the first contribution to forest 
inventory were due to Guibal (1973) who 
applied kriging for estimation of forest stock 
in a tropical uneven-aged forest in Gabon. 
He showed that the result of kriging, 
especially for small area, is more accurately 
than classical approach. Jost (1993) 
compared, under systematic sampling, the 
classical error estimate with their 
geostatistical counterparts in the forests of 
Germany and showed that classical error 
estimate is much more than geostatistical 
counterparts. Biondi et al. (1994) in their 
study of the spatial distribution of stem size 
and increment within U.S. old- growth 
forests found that basal area could be 
measured as a regionalized variable. 
However, that spatial dependence structure 
disappeared after 30m. Gunnarson et al. 
(1998) showed that hardwood volume in old 
stands is an example of a variable that has 
no or little useful spatial auto-correlation in 
Swedish forests and kriging interpolation is, 
therefore, useless to estimate hardwood 
volume. Mandallaz (2000) introduced 
geostatistical methods for double sampling 
schemes in forest inventory and proposed 
double kriging for using auxiliary 
information (based e.g. on aerial 
photographs), which is particularly useful in 
the context of combined forest inventories. 
Tuominen et al. (2003) found that 
geostatistical interpolation, which was 
tested on the stand level estimation in the 
boreal forests of Finland, did not result in 
any further improvement in the accuracy of 
the estimates. Montes et al. (2005) used 
ordinary kriging for estimation of cork oak 
production in Spain. They showed that all 
the variables involved in the cork oak 
production (diameter, basal area, stripped 
surface area and cork thickness) show 
spatial correlation, and ordinary kriging, 
estimates the total stripped surface area 
more accurately than design-based 
approach. Freeman and Moisen (2007) 

applied kriging to improve forest biomass 
maps in U.S. and found poor behavior of 
variograms in the scale which they studied. 
Therefore, the objectives of this study are to 
consider the spatial structure and variability 
of the forest growing stock variables, 
namely basal area, volume and tree density 
as well as investigation on the potential of 
kriging for estimation of them.  
 
 
MATERIALS AND METHODS 
Study area 
Data used in this study were collected from 
a part (502 ha) of the educational and 
research forest station of Tehran University, 
located in the Caspian forests, northern of 
Iran. Geographical coordinates for the 
approximate center of the area are 51˚ 35' E 
longitude and 36˚ 34' N latitude (Fig 1). 
Elevation varies from 700m to 1200m above 
sea level and slope from 5% to 65%. The 
forest is typical of mixed hardwood stands 
of Caspian forests, currently under active 
management by selective cutting regime 
since 30 years ago. 
The inventoried forest area is composed by 
a mix of broad-leaf deciduous tree species. 
The species composition and structure of the 
forest have been influenced by human 
intervention such as animal husbandry and 
management activities like harvesting. 
Dominant tree species are beech (Fagus 
orientalis Lipsky) and Hornbeam (Carpinus 
betulus L.) as well as Maple (Acer velutinum 
Boiss.), Alder (Alnus subcordata C.A.M.) and 
Oak (Quercus castaneifolia C.A.M.).  
The average annual increment of the forest 
is 8m3/ha with mean growing stock of 
460m3/ha (Zahedi Amiri, 1991). Mean 
annual temperature, precipitation and 
relative humidity are 12.23˚C, 1450 mm and 
83%, respectively. Climate is cold and wet in 
winter and temperate in summer without 
any dry season. The growing season is 270 
days per year. The site is naturally seeded, 
old-growth and uneven-aged forest. It is so 
heterogeneous in nature with large 
topographic variations.  
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Fig. 1. Study area. 

 
Inventory method 
The conventional sampling grid in northern 
forests of Iran, namely 150m×200m was 
used for sampling. Each plot consisted of 
two concentric circular samples with surface 
areas of 300m2 (9.77m radius) and 700m2 
(14.93m radius). Diameter at breast height 
(dbh in 1.3m), species, distance and azimuth 
from center, as well as other qualitative 
variables were recorded on each tree in the 
plot whose dbh exceeded of 7.5cm till 
37.5cm at the small plot and greater than 
37.5cm at the bigger one. Using concentric 
circles approximates a Probability 
Proportional to Size (PPS) inclusion rule and 
is therefore more efficient for forest stock 

estimation. The coordinates of each sample 
plot were established using the UTM 
coordinates of the starting point, which was 
determined by global positioning system 
(GPS) equipment with differential 
correction. 
After preparatory analysis and observing 
large nugget effects in experimental 
variograms, we decided to reduce the 
sampling distance by measuring two extra 
sample plots, 50m away toward the north 
and the east directions from central samples, 
like L shaped cluster samples (Fig. 2). 
Finally, by the first grid, 146 and by the 
cluster sampling, 434 sample plots were 
measured in summer 2002.  
 
 

 
Fig. 2. Arrangement of sample plots in the study area 

N



Spatial variability of forest growing stock 46

 
Geostatistical analysis 
Geostatistics was developed to study 
variables that are distributed continuously 
in space, called "regionalized 
variables"(Isaak & Srivastava, 1989; 
Goovaerts, 1997). The basic principal of 
geostatistics is that correlation between 
values of a regionalized variable will 
decrease as distance between the sample 
points increases. The semi-variogram or 
simply variogram indicates the degree of 
similarity among the values of a 
regionalized variable when they are located 
in given separation distance (lag) as well as 
direction away from each other. The spatial 
structure is analyzed by means of 
experimental variogram and is calculated by 
following formula (Webster & Oliver, 2000):  
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Where )(ˆ hγ is the semi-variance estimator 
for N data pairs, separated by a particular 
lag vector of h . )( ixz and )( hxz i +  are the 
values of regionalized variable z at 
locations of i and hi + . 
The variogram is the corner stone of 
geostatistics, and it is therefore vital to 
estimate and model it correctly (Webster & 
Oliver, 2000). The parameters of the 
theoretical variogram can be estimated by 
fitting a model to the experimental 
variogram. When spatial dependence is 
present, the modeled variogram will 
generally increase with distance up to a 
constant value called the sill. The distance at 
which the sill reached is referred to as the 
range. Theoretically, the variogram should 
pass through the zero variance. However, in 
practice, there is often a nonzero variance 
known as the nugget effect, which 
represents the random component of the 
spatial structure. The nugget effect can also 
be caused by spatial variability at distances 
below the minimum  sampling interval and 
measurement errors, as well. The variogram 
is function of both distance and direction. 
When the spatial dependence is only a 

function of distance between the samples, 
then the variogram is isotropic (omni 
directional). When the opposite On the 
contrary, it is said to be anisotropic 
(directional). 
In the current study, the models considered 
in fitting the variograms were spherical (2), 
exponential (3) and pure nugget effect (4) 
(Cressie, 1993), which fitted to the 
experimental variograms using the 
weighted least squares (WLS) method. 
These models are defined as: 
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where 0c , c , h  and a  represent nugget 
variance, structural variance, lag distance 
and range, respectively.  
Prediction or estimation is the task for 
which, geostatistics was initially developed 
and it is generally called Kriging after D.G. 
Krige (1951). Kriging is a procedure for 
estimating regionalized variables at un-
sampled points, based on initial data value. 
However, ordinary kriging, the workhorse 
of geostatistics, is the most common type of 
kriging in practice, particularly in 
environmental sciences (Webster & Oliver, 
2000). It is given by:    
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Where, iλ  is the weight associated with 
each sample location value.  
The estimator may be used for estimation at 
a single point (point kriging) or over an area 
(block kriging). 
Within a probabilistic framework, kriging 
attempts to minimize the expected mean 
square error under the constraint of 
unbiasedness. Hence, kriging is the Best 
Linear Unbiased Estimator (BLUE) as: 
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Meanwhile, Kriging supplements estimation 
with an error variance map besides the 
estimation map. 
In this study for estimation, ordinary block 
kriging without trend was used, since the 
mean is assumed stationary and unknown 
as well as no large-scale trend was observed. 
A 25m×25m grid was used to discretize the 
area for estimation. The size of the grid was 
chosen to be approximately the same as that 
of the sample plots to emphasize the local 
variation around the sampling plots.  
The estimations were done on the nearest 16 
data plots, within the maximum search 
radius, which corresponded to the scale of 
auto-correlation.  
To evaluate the results of kriging usually, a 
Jack-knife cross-validation approach is used. 
All the samples are excluded one by one 
from the data set and estimated again by 
kriging using the remaining samples. Then 
measured data and estimated values are 
compared to evaluate the kriging results 
(Webster & Oliver, 2000). 
In this study, the accuracy of kriging is 
measured using Root Mean Square Error 
(RMSE):  
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where )(ˆ ixz  is the estimated value of 
regionalized variable z at location of i  and 
cross-validation is evaluated by calculation 
of Mean Error (ME) which should ideally be 
equal to zero, because kriging is unbiased 

(Webster and Oliver, 2000):   
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The software package used for geostatistical 
analysis was Gs+ version 9 (Gamma Design 
Software, LLC, Plain well, MI). 
 
RESULTS 
Firstly, we used the 146 sample plots of the 
150m×200m grid for variography. 
Normalization trials using Kolmogorov- 
Smirnov test showed that all the variables 
have approximately normal distribution 
(P>0.05) and do not need to transform them 
(results not shown). Descriptive statistics of 
the three variables (table 1) shows that the 
coefficient of variation of data and therefore, 
variability is rather high with low intra-
cluster correlation coefficient, ρ among the 
sample plots.  
 
In this study, variograms were used as a 
measure of spatial dependence between two 
points. Variogram anisotropy, as invest-
tigated through the experimental variogram 
surfaces, were not found; consequently, only 
omni- directional variograms were modeled. 
Parameters of the models fitted to 
experimental variograms are indicated in 
table 2. Experimental variogram plots and 
fitted models are shown in figure 3. As it is 
clear in table 2, the structured part of basal 
area and volume are 58% and 41%, 
respectively, while there is no spatial 
structure (pure nugget effect) for tree 
density. 
 

 
Table 1. Summary statistics of the 3 variables using 150m×200m sampling grid. 

Variable No. of 
Sample 

Mean 
 

Min 
 

Max 
 

SD CV 
(%) 

ρ 

Basal area (m2/ha) 146 30.2 0.8 58.2 11.4 37.7 0.10 
Volume (m3/ha) 146 442.7 6.5 859.0 182.6 41.2 0.12 
Density (n/ha) 146 245.9 14.3 666.7 139.7 56.8 0.09 

SD, Standard deviation        CV, Coefficient of variation 
ρ, Intra-cluster correlation coefficient (optimal value: ±1) 

 
        Table 2. Parameters of the models fitted to experimental isotropic variograms using 146 sample plots. 

Variable Model Nugget 
effect 

Sill 
 

Range 
(m) 

SP 
(%) 

Basal area Spherical 56 (m2/ha)2 133 (m2/ha)2 360 58 
Volume Exponential 20000 (m3/ha)2 33930 (m3/ha)2 360 41 
Density Pure nugget effect 19170 (n/ha)2 19170 (n/ha)2 - 0 

SP, Structured Part, given by the ratio: (Sill- Nugget effect / Sill) ×100 
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Fig. 3. Isotropic variograms (omnidirectional) with the fitted models using the WLS method for 

the 3 variables by the 146 sample plots. Filled circles represent experimental variograms and solid 
lines represent fitted models. 

 
Then ordinary block (25m ×25m) kriging was 
applied for estimation of three variables over 
the study area. Results of kriging showed 
that the estimated values have a much 

 
smaller variance than the measured data 
because of the smoothing effect of kriging. 
However, the estimated mean is close to the 
measured data mean (Tables 1 and 3). 
 

Table 3. Results of kriging and cross-validation for the 3 variables using 146 sample plots. 
Variable Mean 

 
Min 

 
Max SD CV 

(%) 
RMSE ME 

Basal area (m2/ha) 29.95 14.17 48.03 5.95 19.86 11.01 0.13 
Volume (m3/ha) 438.30 244.33 575.77 78.24 17.85 180.50 1.76 
Density (n/ha) 248.49 141.07 331.25 36.30 14.60 142.04 -4.75 

                      RMSE, Root Mean Square Error          ME, Mean Error 
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The measured data are plotted versus the 
estimated values in figure 4. A bias can be 
observed, which agrees with the high 
nugget effect in the models (table 2) and low 
intra-cluster correlation coefficient, ρ (table 

1) as well. The RMSE amounts appear to be 
large and the ME values are far from zero, 
indicating that kriging did not produce an 
accurate estimation for each point (table 3). 
 

 

 

 
Fig. 4 . (a, b). Comparison between measured and estimated values for the basal area and volume 

using 146 sample plots. 

 
Secondly, after gaining the poor results from 
variography and kriging, we used the extra L 
shaped cluster samples (the 434 sample plots) 
for variography (Fig 5). Table 4 shows 
descriptive statistics of the three variables and 

 
table 5 is the results of variogram modeling. 
Surprisingly, by decreasing the sampling 
interval from 150m to 50m, the nugget effect 
went higher and no improvement happened 
in cross-validation results. 
 
 

Table 4. Summary statistics of the 3 variables using L shaped cluster samples 
Variable No. of 

Sample 
Mean 

 
Min 

 
Max 

 
SD  CV 

(%) 
ρ 

Basal area (m2/ha) 434 31.3 0.7 72.2 11.8 37.7 0.08 
Volume (m3/ha) 434 462.9 6.5 1153.3 198.0 42.7 0.11 
Density (n/ha) 434 239.6 14.3 1066.7 144.0 60.1 0.08 

SD, Standard deviation        CV, Coefficient of variation 
ρ, Intra-cluster correlation coefficient (optimal value: ±1) 

 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 



Spatial variability of forest growing stock 50

  

 
Fig. 5. (a, b, c). Isotropic variograms (omnidirectional) with the fitted models using the WLS 

method for the 3 variables by the 434 sample plots. Filled circles represent experimental 
variograms and solid lines represent fitted models. 

 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
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Table 5. Parameters of the models fitted to experimental isotropic variograms using 434 sample 
plots. 

SP, Structured Part, given by the ratio: (Sill- Nugget effect / Sill) ×100 

 
Discussion  
Three forest variables; basal area, volume 
and tree density, were investigated in this 
study in view point of spatial structure in a 
natural hardwood forest. Both basal area 
and volume showed medium spatial 
dependence and well behaved but weak 
auto-correlation in the first studied scale (by 
150m×200m grid), while no auto-correlation 
found in the second scale (L shaped 50m 
away sample plots). However, tree density 
revealed as the pure nugget effect, which 
was not auto-correlated neither in first scale 
nor in the second one, indicated that no 
spatial organization of the values were 
recognized. Overall, the nugget component 
was rather large, which agrees to low intra-
cluster correlation coefficient, ρ (tables 1 and 
4). Large nugget effect is typical for forest 
inventory data (Jost, 1993). The large nugget 
effect in the variograms of the studied 
variables can be explained, according to 
Chiles and Delfiner (1999), by three causes: 

1- Structures with a range shorter than the 
smallest inter-point distance (short-
range variability)  

2- Estimation errors of random effects or 
stand density 

3- Micro- structures that is a component 
of a range shorter than the sampling 
support (inventory plot)  

Therefore, we reduced the sampling 
distance from 150m to 50m. Normally, 
nugget effect should go down by decreasing 
the sampling distance. However, in this 
research surprisingly by decreasing the 
distance, the nugget effect went higher and 
the spatial structure became weaker. This is 
implying an inherent variation in forest 
stock variables in this forest, even in 50m, 

which confirmed the poor results of cross-
validation (figure 4). The results emphasis 
that tree variables are not exactly 
regionalized variables, because according to 
Kint et al. (2003), trees are basically discrete 
objects. In fact, forest growing stock has 
scattered randomly over the study area 
without any significant continuity, due to 
the selective cutting regime employed. The 
dominating causes of this abrupt spatial 
variations, besides the randomly 
distribution of trees are first, human 
intervention, such as road construction and 
animal husbandry, and second, natural 
causes such as wind throw and outbreaks of 
insects and diseases. Furthermore, 
physiographic and topographic agents are 
major factors in short distance variability. In 
fact, the site is quite heterogeneous in 
nature. This high heterogeneity and weak 
spatial structure caused anisotropy which is 
expected in such naturally heterogeneous 
area, vanished and can't be seen in 
experimental variograms. 
Results of kriging showed that due to 
smoothing effect of kriging, the variance of 
estimated values is much lower than the 
measured data (Tables 1, 3 and 6), while the 
estimated mean is close to the data mean. 
However, the cross-validation results 
indicated a bias between kriged and 
measured data. In fact, all the estimated 
values are scattered vertically around the 
over all data mean (Fig. 4). We examined 
kriging by different block sizes (25m×25m, 
50m×50m and 100m×100m) and plot sizes 
(300m2 and 700m2). However, the results 
were the same, approximately. Therefore, 
the three variables are not good candidates 
for kriging. 
 
 

Variable Model Nugget  
effect  

Sill  
 

Range 
(m) 

SP 
(%) 

Basal area  Exponential 122 (m2/ha)2 140 (m2/ha)2 300 13 
Volume  Exponential 32500 (m3/ha)2 39000 (m3/ha)2 300 16 
Density  Pure nugget effect 22500 (n/ha)2 22500 (n/ha)2 - 0 
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Table 6. Results of kriging and cross-validation for the 3 variables using 434 sample plots 
Variable Mean 

 
Min 

 
Max SD CV 

(%) 
RMSE ME 

Basal area (m2/ha) 31.02 21.13 44.18 3.89 12.55 11.58 0.23 
Volume (m3/ha) 457.56 280.01 698.10 70.87 15.49 191.58 3.42 
Density (n/ha) 240.54 129.7 391.8 47.06 19.56 143.67 -2.85 

RMSE, Root Mean Square Error  ME, Mean Error 
 
Overall, basal area, volume and tree density 
did not behave as a regionalized variable in 
the forest. Consequently, spatial distribution 
of them are not auto-correlated over 
distance. As a result of these discontinuities, 
kriging might not be a suitable alternative 
for estimating hardwood stock in this forest 
and therefore, the best estimator would be 
the simple mean.  This is in contradiction to 
the results of Biondi et al. (1994) who used 
basal area as a continuous variable within 
U.S. old- growth forests as well as to those 
of Montes et al. (2005) who used ordinary 
kriging for estimation of cork oak 
production in Spain. On the other hand it 
confirms the results of Gunnarson et al. 
(1998) and Tuominen et al. (2003): 
Weighting procedures based on spatial 
auto-correlation do not generally perform 
very well when (growing stock related) 
variables are estimated in managed forests 
(Gunnarson et al. 1998). The main reason for 
this is that human interventions produce 
abrupt changes in the forest, whereas 
geostatistical methods are best suited for 
data, in which the value of the measured 
attribute changes slowly in stages. 
(Tuominen et al. 2003). 
Therefore, it is proposed to apply 
geostatistical approach in unmanaged 
natural forests, such as forest reserves (lack of 
abrupt changes), to obtain insight of natural 
processes which is necessary for close to 
nature forestry or in the plantation forests. 
Finally, since the forest is a varied study area 
with multiple populations, stratification of 
the forest is a straightforward way to increase 
the structured part of variograms for future 
researches in this context. 
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