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ABSTRACT 
Classification trees (J48) were induced to predict the habitat requirements of tench (Tinca tinca). 306 
datasets were used for the given fish during 8 years in the river basins in Flanders (Belgium). The input 
variables consisted of the structural-habitat (width, depth, gradient slope and distance from the source) 
and physic chemical (pH, dissolved oxygen, water temperature and electric conductivity), and the 
output ones were the abundance and presence/absence of tench. To find the best performance model, a 
three-fold cross validation was applied on the entire dataset. In order to evaluate the model stability, the 
dataset were remixed in 5 times, obtaining in total 15 different model training and validation events. 
The effect of pruning on the reliability and model complexity was tested in each subset. The 
performance evaluation was based on a combination of the number of Correctly Classified Instances 
(CCI) and Kappa statistic. The results showed that the predictive performance evaluation was suitable, 
confirming the reliability of classification trees methods. The overall average of CCI and Kappa for the 
prediction of tench was obtained 75.8% and 0.53. When analyzing the ecological relevance of 
classification trees, it seemed that the structural-habitat variables were important predictors compared 
to physic chemical variables. 
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INTRODUCTION 
During the last decades, many fish species 
in Flanders (Belgium) decreased 
enormously; therefore the structural 
quality of the habitat is often too poor to 
support a diverse and balanced fish 
population, in particular in the canals 
(Belpaire, 2000). A key issue in 
conservation management and river 
restoration is to get acquainted with the 
relationship between the environmental 
factors and the occurrence of the 
freshwater organism. In this perspective, 
modeling techniques are becoming as 
important tool to support decision-making 
in water management and conservation. 
Prediction of organisms by modeling 
techniques has been an interesting subject 
for many researches (Gaston and 
Blackburn, 1999; Olden and Jackson, 2002; 

Goethals et al., 2002; Dedecker et al., 2002; 
D’heygere et al., 2003; Dakou et al., 2006 a, 
b). Among these, decision tree (Quinlan, 
1993) is well known as a powerful tool to 
predict freshwater organisms. Predictive 
models play significant role in 
environment conservation, biological 
monitoring and resource assessment 
(Fielding and Bell, 1997). Moreover, the 
given models are known as the alteration 
and loss of aquatic habitat and also as the 
core factor threatening the conservation of 
fish populations and communities (Richter 
et al., 1997; Harig and Bain, 1998; Ricciardi 
and Rasmussen, 1999). When predicting 
the presence/absence of organisms by 
models, one has to pay more attention to 
the collection of suitable model inputs 
(Kaastra and Boyd, 1995; Faraway and 
Chatfield, 1998).  
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Tench are Cyprinid fish, belonging to the 
same family of goldfish, rudd and koi 
carp. They are wide  spread in European 
countries and neighboring regions. Tench 
populations are not important as 
commercial fish because they have slow 
growth rate and tasteless flesh (Yilmaz, 
2002). This study mainly aimed to develop 
classification tree models (J48) to predict 
the habitat requirements of tench in the 
river basins in Flanders. 

MATERIAL AND METHODS 
Study area  
Flanders is located in the northern part of 
Belgium and has several major river 
basins (Fig. 1). The main river basin 
covering nearly whole Flanders is the 
Scheldt (which is about 70% of Flanders). 
For management aims the Scheldt River 
basin itself is divided in 8 subbasins: 
Upper Scheldet, Leie, Dender, Nete, 
Demer, Dijle, Polder and canals around 
Ghent. 

 
Fig. 1. Location of Flanders in Belgium (the Scheldt and Meuse river basins in France, 
Belgium and the Netherlands. Major part of the Scheldt river basin is located in Flanders 
(Goethals, 2005). 
 
Database set-up 
The dataset consisted of measurements of 
306 instances for tench collected in 8 river 
basins in Flanders. At each sampling sites, 

 
several environmental variables were 
recorded during monitoring campaigns 
(Table 1). 

 
Table 1. Biotic and abiotic input variables used for the prediction of the habitat suitability of 
tench in the river basins in Flanders.  

River characteristics Unit Minimum Maximum Mean ± SD 
Water temperature °C 2.5 23.1    10.74 ± 3.90 
Distance from the source Km 0.0 84.8 20.50 ± 20.90 
Width m 0.4 66.7 7.00 ± 6.60 
Slope % 0.0 35 2.30 ± 3.50 
Depth m 0.1 2.5 0.65 ± 0.45 
Dissolved oxygen (DO) mg l-1 1.3 14.9 8.30 ± 2.30 
pH  5.3 8.6 7.30 ± 0.50 
Electric conductivity (EC) �S/cm 153 5220 787 ± 575 
Abundance N 0.0 1200   61 ± 152 
SD: standard deviation  
 
These measurements consisted of the 
physic chemical variables: electric 
conductivity, dissolved oxygen, pH, water 

temperature and the structural-habitat 
variables: gradient slope, distance from 
the source, width, and depth. Biotic 
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variable was only the abundance of tench 
in which the tench presence-absence was 
obtained from this variable. Abundance 
data was also used for visualizing the 
scatter plot of physico-habitat variables for 
tench. The abiotic variables were used as 
input variables and biotic variables as 
output in the J48 model included in the 
Weka toolbox (Witten and Frank, 2000). 
Before model development it was 
important to determine the frequency of 
occurrence of tench in the sites. The 
frequency of occurrence (observed values) 
for tench was considered 50% in all 
monitored sites of which tench were 
present in 153 cases (50%) and were absent 

in 153 cases (50%). The geographical 
distribution of presence/absence of the 
given species in the monitored sites is 
visualized in Fig. 2.  
Electric-fishing method was conducted 
with a 5 KW generator (with voltage of 
300/500V and a pulse frequency of 480 
Hz). The number of hand-held anodes was 
2. Further information on sampling 
methodologies is given by Belpaire et al. 
(2000). In this monitoring approach, to use 
the classification tree methods, if no fish 
species were caught the number of “0” (as 
absence) otherwise number of “1” (as 
presence) was represented. 

 

         
Fig 2. Geographical distribution of tench in the river basins in Flanders (the fish presence is 
indicated as filled circles and absence is indicated as open circles). 
 
Classification trees 
Classification trees (Breiman et al., 1984), 
often referred to as decision trees 
(Quinlan, 1986) that predict the value of a 
discrete dependent variable with a finite 
set of values (called class) on the basis of 
the values of a set of independent 
variables (called attributes), which may be 
either continuous or discrete. In this 
paper, the dependent variables were the 
biotic variable (the presence/absence of 
tench) and the independent variables were 
the 8 abiotic variables listed in Table 1. 
The common way to induce classification 
trees is Top-Down Induction of 
classification trees that starts with the 
entire set of training examples (Quinlan, 
1986). The Classification trees system 
recursively partitions the dataset into 
smaller subsets by selecting one attribute 
to ‘branch’ on (creating one or more 

most informative attribute is selected by 
introducing a function that assigns a value 
of the quality of the partition obtained by 
a specific attribute. For discrete attributes, 
a branch of the tree is typically created for 
each possible value of the attribute. For 
continuous attributes, a threshold is 
selected and two branches are created 
based on that threshold. The final subsets 
formed by the recursive process are called 
the ‘leaves’ of the decision tree and each 
tree is labelled with a class. In this study, 
classification tree (J48) was used, which is 
a Java re-implementation of C4.5 
(Quinlan, 1993) and is a part of the 
machine learning package Weka. Here, J48 
with default values of the parameters was 
used for inducing classification tree. The 
only exception was the use of the Pruning 
Confidence Factor (PCF) in which PCF 0.1 
was applied for tench.  
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Model training and validation  
The prediction accuracy of the induced 
model was evaluated based on two model 
indicators: the percentage of CCI 
(Correctly Classified Instances) and the 
Cohen’s Kappa statistic (Cohen, 1960). 
Model training and validation for the fish 
species was applied according to a 3-fold 
cross-validation. Here, 204 instances (two-
third of datasets) were allocated for the 

 
training and 102 instances (one-third) for 
the validation set respectively. The 
stability of the model development was 
tested on the basis of five independent 
remixes as well as three subsets in the 
dataset. Due to simplicity in interpretation 
of results only 1 out of 5 remixes with high 
reliability was considered for the fish 
species.  

 
Table 2. Predictive results of classification tree models based on J48 with pruning 
optimization (the third time data randomization was considered for tench)  
Fish 
species 

Frequency of 
occurrence 

(%) 

SSi CCI 
(%) 

Mean CCI (%) 
± SD 

Kappa Mean 
Kappa ± 
SD 

Number of 
leaves (model 
complexity) 

Tench 
(remix 3) 

 
50 

SS1 
SS2 
SS3 

80.4 
74.5 
72.6 

 
75.8 ± 4.1 

0.60 
0.50 
0.50 

 
0.53 ± 0.08 

8 
15 
7 

SSi: the number of subsets and SD: standard deviation 
 
Among 3 subsets the highest predictive 
results were obtained in the subset 1 (CCI 
80.4% and Kappa 0.60). In Fig. 3, the 
predictive results based on CCI and 
Kappa is visualized for tench. As a result, 
the reliability of performance model for 

the prediction of tench seems to be good. 
The number of leaves ranged between 7 
(subset 3) and 15 (subset 2) which 
increased the complexity of trees, hence 
caused the ecological interpretation very 
difficult. 
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Fig. 3. Evaluation of classification trees (J48) based on CCI% (a) and Cohen's Kappa (b) for 
tench in the river basins in Flanders (SSi: Subsets). 
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The induced classification tree models 
   
The constructed trees (J48) for tench are 
presented in Fig. 4. From the given trees, 
general rules (in terms of IF and THEN) 
can be deduced for the presence/absence 
of tench. These rules can be derived from 
the leaf to the root of the trees. As 
visualized here, the induced trees grew 
with 6 leaves (size of the trees 11). For 
simplicity in the interpretation of the 
results, only the remix 3 from subset 2 was 
selected. In order to reduce the complexity 
of the trees, PCF 0.1 was merely applied. 
In the given subset and remix, more 
reliable prediction was obtained so that 79 
of 102 instances (77.5%) were correctly 
classified with the respective Kappa 0.55 
(the number of instances is not directly 
indicated for each variable displayed in 
figure 4). As seen in the given trees, all 4 
structural-habitat variables and also one 
physico-chemical variable (water 
temperature) were detected for the 
prediction of presence/absence of tench. 
In subset 1 and 3, the structural-habitat 
variables (particularly distance from the 
source) were also the most dominant 
variables for the prediction of the 
presence-absence of tench. Pearson 
correlation coefficient (p<0.05) calculated 
between the structural-habitat variables 
and abundance of tench revealed that the 

individuals were positively correlated 
with distance from the source (r = 0.30), 
width (r = 0.25), depth (r = 0.23) and 
negatively correlated with slope   (r = -
0.22). In relation to the physic chemical 
variables, tench populations were weakly 
and negatively correlated with dissolved 
oxygen (r = -0.14) and electric conductivity 
(r = -0.01) and positively with pH (r = 0.27) 
and water temperature (r = 0.15). When 
distance from the source is approximately 
lower than 16 km and the slope is lower 
than 0.6%, tench populations were 
present. On the contrary, in slope higher 
than 0.6%, they were missing. When 
distance from the source reached higher 
than 16 km and river width became lower 
than 8 m, tench populations were present 
while in the river width of higher than 8 m 
and deep river of higher than 2 m they 
were absent. In shallow water (lower than 
2 m) with water temperature of lower than 
7°C they were not found. Fig. 5 illustrates 
the scatter plot representing the 
relationship between distance from the 
source and abundance of tench (this figure 
represents a particular example of 
structural-habitat variable). As visualized 
here, the increase of the distance from the 
source leads to the decease of abundance 
of tench populations. 

Distance > 15.9Distance <= 15.9

Width <= 7.5 Width > 7.5

W.T°C <= 6.7

Depth <= 1.6

W.T°C >6.7

Depth > 1.6

Slope >0.6Slope<= 0.6

 
Fig. 4. J48 pruned trees of tench in the sampling sites in Flanders (an example of subset 2 from 
remix 3 with PCF 0.1, double frames contain absent of tench while the dotted rectangles 
contain present of tench, W.T°C: water temperature, Distance: distance from the source).  
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Fig. 5. Scatter plot representing the relationship between distance from the source and 
abundance of tench in the river basins in Flanders (only 285 instances are visualized). 
  
DISCUSSION 
   In the present study, the use of 
classification tree models to get insight in 
the habitat preferences of tench seemed to 
be successful in terms of CCI and Kappa 
statistic. As frequency of occurrence of 
tench was equal in the sampling sites 
(50%), a logical relationship was obtained 
for the prediction of tench based on these 
two model performances. Several authors 
reached the same conclusions (e.g. Manel 
et al., 2001; Goethals et al., 2002; Dakou et 
al., 2006 a, b). The authors stated that the 
predictive performance of classification  
tree models is strongly related to the 
frequency of occurrence of the organism. 
In this study, the model performance for 
the prediction of tench was acceptable, 
probably because more and better data 
were available for the given species. This 
was in line with in the study of Dakou et 
al. (2006a) demonstrating the close 
relationship between the frequency of 
occurrence of the predicted organisms in 
the dataset and the predictive 
performance of the models. 
When analyzing the ecological relevance 
of classification trees for tench 
populations, one can see that the 
structural-habitat variables were the most 
dominant ones for the prediction of the 
habitat suitability of tench in the river 
basins. Unlike the structural-habitat 
variables, classification trees didn’t 
present reliable predications for the 
habitat preferences of tench in terms of all 

physico-chemical variables. The only 
explanatory variable for the prediction of 
presence/absence of tench was water 
temperature. One of the significant 
predictors affecting the quantity of habitat 
preferences of the given fish is water 
temperature (Casselman et al., 1996). 
Nevertheless this variable was detected in 
the end of trees. Water temperature had a 
less contribution to the prediction of tench 
(compared to the structural-habitat 
variables) nevertheless the constructed 
trees were reliable for water temperature. 
Tench are well-known as warm water fish 
species and unlike salmonidae (cold water 
species) prefer temperature over 20°C. 
Their favorite temperature is 20-21°C and 
their final preference would be 27.4 ± 
0.5°C (Pereze Regadera et al., 1994). A 
preferred range of water temperature for 
tench is 15-23.5 °C and growth can happen 
over the range 12-30°C. Tench spawning is 
also closely dependent on water 
temperature, but the temperature in 
relation to spawning differs (Rowe, 2004). 
Gray and Daule (2001) pointed out that 
spawning happened in late spring when 
the range of water temperature was 
between 10 and 20°C. Low variations of 
water temperature in Flanders’s climate 
are probably the main reason for 
appearing this variable in the end of 
induced trees, confirming the less 
contribution of this variable to the 
prediction of habitat requirements of tench 
in Flanders.  
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Based on the trees, tench populations 
avoid inhabiting higher depth (deeper 
than 1.6 m). This is in line with the study 
of Rowe (2004), demonstrating that tench 
are mainly found in shallow, still and 
slow-moving freshwater environment. 
However, spawning of tench happens in 
shallow waters (usually <1 m deep) and 
tench are able to spawn in a broad range of 
water temperature, laying their eggs over 
aquatic vegetation such as macrophyte and 
reeds (Rowe, 2004). Habitat complexity and 
food accessibility and are two factors to 
describe the high density of fish in 
vegetated habitats (Grenouillet and Seip, 
2002), in particular tench populations are 
very closely dependent on vegetation 
cover.  
In addition to depth, gradient-slope, 
distance from the source and wetted-
width were determined as important 
predictors for the habitat requirements of 
tench in the river basins. Classification 
trees model clearly showed that when the 
river slope increases, tench tend to be 
absent. Rowe (2004) reported that a 
maximum of water velocity for tench is 
0.27 m/s. This demonstrates that tench 
avoid high-gradient slope and rapid 
water. It is well documented that adult 
tench inhabit a range of waters typically 
dominated by low water velocities, soft 
substrates (e.g. mud, silt or sand) and 
existence of some aquatic vegetation. 
Some of such habitats in rivers for tench 
include the lower reaches of rivers, off-
river habitats such as oxbows and river 
deltas (Donnely et al., 1984; Gonzalez et 
al., 2000). Based on the classification trees, 
the distance from the source is the first 
and main explanatory variable describing 
habitat requirements of tench; that is why 
the trees first emerged with this variable. 
Distance from the source has also a close 
relation with the gradient-slope as 
visualized already in the emerged trees. 
From ecological perspectives, these 
variables seem to be quite logical and the 
relevance of these (integrating) structural-
habitat variables is confirmed in the 
literature (Kerle et al., 2001). The variable 
‘distance from source’ illustrated that most 
tench individuals are found in upstream 
part of rivers. In essence, the upstream 
part of rivers is not a suitable habitat for 
tench individuals. This may be related to 

water pollution in the downstream part of 
rivers. If the downstream of rivers was not 
polluted, many tench individuals would 
inhabit this part. This was in accordance 
with the study of Brosse et al. (1999), 
demonstrating that fish were mainly 
found in downstream part of river. Tench 
were found to be present when the river 
width was lower than 7.5m, while in 
width higher than 7.5m the absence of 
tench was mainly related to river depth.  
Dissolved oxygen, pH and electric 
conductivity were never classified as 
important variables for the given species. 
This may be explained by the fact that 
tench are highly tolerant of low oxygen 
levels (Vainikka, 2003) and can survive in 
waters whose oxygen levels are as low as 
0.7 mg/l (Rowe, 2004), therefore they can 
somewhat bear the eutrophicated 
conditions. As a result, the given variable 
was not taken into account as an 
important variable for the prediction of 
presence/absence of tench. Adult tench 
can highly tolerate a broad range of pH 
but they prefer the range of pH 6.5-8 
(Rowe, 2004). Mortality increases at levels 
below 5 and over 10.8. The range of 
observed values of pH in the river basins 
in Flanders never exceeded 10.8 or 
dropped 5, demonstrating the less 
importance of pH for the prediction of 
tench in the sampling sites.  
Although the models were more or less 
reliable, the prediction of tench could be 
further improved by including more 
variables in the standard monitoring 
network. In particular, the including of 
some relevant habitat variables (e.g. pool-
riffle patterns and dense vegetation cover) 
can be useful depending on rich 
vegetation for food collection and 
regeneration.  
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